Name of author:

Saeran Doh, Ph.D.

Associate Professor of Marketing

Department of Food Business Management

School of Food, Agricultural and Environmental Science

Miyagi University

University Address:

2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215, JAPAN

Department of Food Business Management

School of Food, Agricultural and Environmental Sciences

Miyagi University

Tel : +81-22-245-1354

E-mail: saeran10@myu.ac.jp

Flow Construct: Its Mediating Roles in an On-line Search Model

Abstract

This paper examines the role of flow construct in consumers' on-line information search behavior. The existing studies of consumer information search have focused on the cost-benefit framework. However, some consumers exhibit information search behavior which does not fit in this framework, especially in an on-line environment. They engage in the information search even when information search cost exceeds its benefit.

Therefore, the introduction of "flow" construct to cost-benefit framework produces an important extension of consumer information search model. This paper tries to extend the cost-benefit framework model by incorporating flow construct.

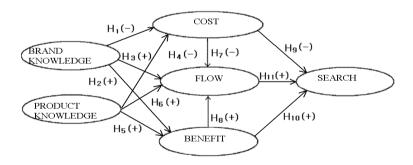
Key Words

on-line environment, flow, information search, hedonic perspectives

. Introduction and Objectives

This paper examines how "flow" construct influences online information search behavior. The introduction of hedonic perspectives produces an important extension of the cost –benefit framework of consumer information search model. The existing research of consumer information search has focused on cost-benefit framework. However, some consumers exhibit information search behavior which does not fit in the cost–benefit framework, especially in on-line search. They engage in information search even when information search cost is greater than its benefit. One conceivable factor which may explain this type of consumer behavior is the hedonic or experiential aspect of consumer behavior. In on-line environment, hedonic value is manifested when consumers engage in continuing information search activity such as web surfing and browsing, even if it incurs extra cost.

This paper examines how flow influences the cost-benefit framework in an on-line information search model. The framework of existing information search models does not fully explain the "playfulness" of information search behavior. According to Csikszentmihalyi(1990), flow is the state in which people are so intensely involved in an activity that nothing seems to matter. The experience itself is so enjoyable that people will do


it even at great cost for the sheer sake of doing it. Flow is also characterized by total concentration and having enjoyment in what you are doing (Ghani and Deshpande 1994). This paper attempts to extend the cost-benefit framework model by introducing the flow construct.

. Literature Review and Research Model

In the past studies, the framework mostly used to analyze consumer information search behavior has been the cost-benefit framework (Punj and Staelin 1983; Srinivasan and Ratchford 1991). But some consumers engage in continuous searching for information whatever cost it takes. This shows one of the limitations of the cost-benefit framework. The cost-benefit framework cannot fully explain this hedonic aspect of consumer information search behavior, especially in an on-line environment.

As is shown in Figure 1, the proposed new model is composed of six constructs: Brand Knowledge and Product Knowledge as exogenous latent variables; Cost, Benefit, Flow and Search as endogenous latent variables.

Figure 1 Flow Mediating Model

The thrust of this mediating model analysis is to examine how brand knowledge and product knowledge influence the information search through mediating flow in addition to the cost-benefit framework. Brand Knowledge refers to the awareness of brands. If people are so addicted to playing on-line games, they would be very familiar with available brands and

items of games. Product Knowledge refers to the consciousness or knowledge about the products. Cost means the perceived size of burden to bear when people search for something. It is characterized into four kinds: Time cost, Economic Cost, physical Cost, and Psychological Cost (Doh 1997). Benefit refers to the advantages or profit which one derives while they are engaged in an on-line activity. Flow is the state in which people get immensely involved in what they are doing and they experience enjoyment for doing that. Search refers to seeking for the information amount needed while they are playing on-line game.

The hypotheses of this model are as follows:

According to existing Brand Knowledge research (Brucks 1986, Doh 1997), Brand Knowledge includes the name of the brand, merits and demerits of each game character, game events, paid games or not, and each game maker/distributor. If consumers have this knowledge, they can reduce costs such as time, economic, physical, and psychological costs. In other words, search cost can be reduced to the extent consumers have brand knowledge. Consequently, if consumers have enough brand knowledge, they can enjoy larger search benefit. Csikszentmihalyi (1975, 1990) also mentioned that people can feel flow easily when they have much knowledge about what they are trying to do.

- H1: Brand Knowledge influences Search Cost negatively.
- H2: Brand Knowledge influences Search Benefit positively.
- H3: Brand Knowledge influences Flow positively.

Product knowledge includes a product's function, ability, and technology (Brucks 1986). If consumers have much of this knowledge, they can reduce the information search costs such as time, economic, physical, and psychological costs. If consumers know much about each game pattern, the differences of the similar game genre and each game interface (i.e. screen formation, operation), and game terminology, they can better get the search benefit.

H4: Product Knowledge influences Search Cost negatively.

Srinivasan and Ratchford (1991) hypothesized that the product knowledge influences the perceived benefit positively. They also found the positive relationship between them. If a consumer has much product knowledge, that would help his/her search behavior. Finding a most suited game, in terms of characters and difficulty of the game, is critical in obtaining

satisfaction from game playing, and product knowledge helps a game player to find a game he /she is looking for. So, if consumers have the more product knowledge, the more benefit they can get during information search.

H5: Product Knowledge influences Search Benefit positively.

Hoffman and Novak (1996) mentioned that flow is accompanied by recognition and self-reinforcement. The substance of the flow is the continuous response such as mechanical communication and internal enjoyment. As previously mentioned, if people have much product knowledge on online games, they can feel flow easily.

H6: Product Knowledge influences Flow positively.

If people take cost to search information, they are less likely to feel flow. However, if people take benefit to search information, they can feel flow easily in an online game.

H7: Search Cost influences Flow negatively.

H8: Search Benefit influences Flow positively.

Srinivasan and Ratchford (1991) hypothesized that the search cost influences the Information search negatively. They found the negative relationship between them. If people seriously consider cost, people might search less.

H9: Search Cost influences Information Search negatively.

Srinvasan and Ratchford (1991) found out that the relationship between 'perceived benefit' and 'search amount' are positive. If people can expect more benefit from searching, they can increase the intention of search.

H10: Search Benefit influences Information Search positively.

Csikszentmihalyi (1975) mentioned that flow, which becomes the happiness and optimal experience tasted, is to increase interest in the search. Hoffman and Novak (1996) suggested that flow is intrinsic enjoyment accompanied by recognition and self-reinforcement. If people can experience flow through search, they can get more information search. In addition, Korzan (2003) found that flow positively affects online search activity.

H11: Flow influences Information Search positively.

. Method

Using SPSS 12.0,we got the Cronbach alpha values for examining the reliability of each construct. We used LISREL 8.73 to test the relationships between each constructs.

1. Demographic Characteristics

This research sample is of 627 students who are in college in a metropolitan city's suburb. Male students are 72% (451 subjects) and female students are 28 % (176 subjects). As for the age, subjects below 20 years old are 3.7% (23 subjects), 20-25 years old subjects are 74.6% (468 subjects), and 26-32 year old subjects are 21.7% (136 subjects). As for the grade, freshman students are 36.7% (232 subjects), sophomore students are 12.1% (75 subjects), junior students are 21.2% (132 subjects), and senior students are 30% (188 subjects).

2. Examination of Reliability and Validity

The author examined the reliability and validity of the variables used for testing the hypothesis. The measurement was done by 7 point Likert scale. Reliability is the degree of consistency in measurement scores. Validity is directly assessing whether or not the concept is measured correctly. Therefore, before conducting the hypothesis test, it is necessary to examine the reliability and validity of measurement of each construct.

1) Reliability Examination

The variables' reliability was tested by Cronbach alpha that indicates internal consistency between measuring items and Squared Multiple Correlations (SMC) suggested by LISREL 8.73. Cronbach alpha value indicates the measured reliability of each construct as an index, while SMC suggests reliability coefficient as each index within each construct. Table 1 shows the test results of the reliability for each variable. In addition, to evaluate the convergent validity of the measuring variables of model, we used Confirmatory Factor Analysis (CFA) which is shown in Table 2.

<Table 1> Reliability Index and Cronbach α

Constructs	Index	SMC	Composite Reliability (CR)	Average variance Extracted (AVE)	Cronbach α
	X1	0.702			
	X2	0.749			
Brand	X3	0.604	0.020	0.600	0.020
Knowledge (BK)	X4	0.605	0.930	0.688	0.928
	X5	0.766			
	X6	0.702			
	X7	0.706		0.771	0.943
Product	X8	0.751	0.944		
Knowledge	X9	0.790			
(PK)	X10	0.786			
	X11	0.823			
	Y1	0.553		0.610	0.849
Information	Y2	0.820	0.960		
Search Cost(Cost)	Y3	0.655	0.860		
	Y4	0.368			
Information Search Benefit (BE)	Y5	0.636			
	Y6	0.800		0.740	0.933
	Y7	0.777	0.934		
	Y8	0.762			
	Y9	0.725			

Y10	Constructs	Index	SMC	Composite Reliability (CR)	Average variance Extracted (AVE)	Cronbach α
Flow (Flow)		Y10	0.636			
Flow (Flow) Y13		Y11	0.691			
(Flow) Y13		Y12	0.646			
Y14 0.525 Y15 0.307 Y16 0.343 Y17 0.741 Y18 0.722 Y19 0.696 Y20 0.741 Y21 0.403 Search Y22 0.482 (SR) Y23 0.281		Y13	0.296	0.868	0.492	0.835
Y16 0.343 Y17 0.741 Y18 0.722 Y19 0.696 Y20 0.741 Y21 0.403 Search Y22 0.482 0.928 0.544 0.929 (SR) Y23 0.281	(1 low)	Y14	0.525			
Y17 0.741 Y18 0.722 Y19 0.696 Y20 0.741 Y21 0.403 Search Y22 0.482 0.928 0.544 0.929 (SR) Y23 0.281		Y15	0.307			
Y18 0.722 Y19 0.696 Y20 0.741 Y21 0.403 Search Y22 0.482 (SR) Y23 0.281 0.544 0.929		Y16	0.343			
Y19 0.696		Y17	0.741			
Y20 0.741		Y18	0.722			
Information		Y19	0.696			
Search Y22 0.482 0.928 0.544 0.929 (SR) Y23 0.281		Y20	0.741			
(SR) Y23 0.281	Information	Y21	0.403			
123 0.281	Search	Y22	0.482	0.928	0.544	0.929
Y24 0.298	(SR)	Y23	0.281			
		Y24	0.298			
Y25 0.540		Y25	0.540			
Y26 0.585		Y26	0.585			
Y27 0.499		Y27	0.499			

¹⁾ CR = composite reliability, AVE = average variance extracted. SMC = Squared Multiple Correlations.

^{2) (1)} CR and AVE are calculated with the formula of Fornell and Lacker(1981).(2) SMC value indicates each index's reliability 3) Flow constitutes of 10 indices. However, 2 reverse items (Y4, Y8) and Y9's SMC had low values, 0.102, 0.019, 0.199, respectively .So we conducted our analysis with only 7 variables.

2) Validity Examination

<Table 2> Results of Confirmatory Factor Analysis

\1 able	2 Results of	Comminatory Fac	AUI Allalysis
Parameter	Estimated Value	Standard Error	t Value
λ(x)11	1.448***	0.057	25.626
λ(x)21	1.558***	0.058	26.986
λ(x)31	1.114***	0.049	22.891
λ(x)41	1.461***	0.064	22.910
λ(x)51	1.446***	0.053	27.494
λ(x)61	1.312***	0.051	25.627
λ(x)72	1.417***	0.055	25.843
λ(x)82	1.552***	0.057	27.164
λ(x)92	1.510***	0.053	28.308
λ(x)10,2	1.601***	0.057	28.197
λ(x)11,2	1.590***	0.054	29.337
λ(y)11	1.294***	0.062	20.791
λ(y)21	1.459***	0.053	27.503
λ(y)31	1.355***	0.058	23.350
λ(y)41	1.050***	0.066	15.958
λ(y)52	1.318***	0.056	23.690
λ(y)62	1.532***	0.054	28,406
λ(y)72	1.485***	0.054	27.721
λ(y)82	1.594***	0.058	27.284
λ(y)92	1.520***	0.058	26.206
λ(y)10,3	1.409***	0.061	23.262

Parameter	Estimated Value	Standard Error	t Value
λ(y)11,3	1.358***	0.055	24.775
λ(y)12,3	1.270***	0.054	23.528
λ(y)13,3	0.897***	0.064	14.111
λ(y)14,3	1.037***	0.051	20.279
λ(y)15,3	0.803***	0.056	14.418
λ(y)16,3	0.868***	0.056	15.409
λ(y)17,3	1.402***	0.052	26.769
λ(y)18,3	1.265***	0.048	26.206
λ(y)19,3	1.394***	0.055	25.460
λ(y)20,4	1.667***	0.062	26.776
λ(y)21,4	1.057***	0.061	17.415
λ(y)22,4	0.993***	0.051	19.557
λ(y)23,4	0.641***	0.046	14.005
λ(y)24,4	0.846***	0.058	14.484
λ(y)25,4	1.393***	0.066	21.138
λ(y)26,4	1.371***	0.061	22.352
λ(y)27,4	1.278***	0.064	20.013

¹⁾ All t values to each factor loading are t > 3.090(p < 0.001 [right side test]).

<Table 3> Discriminant Validity of CFA Model

Relationship	between Constructs	Φ(Correlation)	99% Confidence Interval
Brand Knowledge	Product Knowledge(PK)	0.930***	$0.909 < \rho < 0.951$
(BK)	Search Cost (Cost)	0.018(ns)	$-0.096 < \rho < 0.132$
	Search Benefit (BE)	0.524***	$0.441 < \rho < 0.607$

	Flow(Flow)	0.667***	$0.600 < \rho < 0.734$
	Search Intention(SR)	0.790***	$0.744 < \rho < 0.836$
	Search Cost (Cost)	0.018(ns)	$-0.093 < \rho < 0.129$
Product Knowledge	Search Benefit (BE)	0.586***	$0.511 < \rho < 0.661$
(PK)	Flow (Flow)	0.717***	$0.658 < \rho < 0.776$
	Search Intention (SR)	0.832***	$0.793 < \rho < 0.870$
Search	Search Benefit (BE)	0.339***	$0.238 < \rho < 0.440$
Cost (Cost)	Flow (Flow)	-0.007(ns)	$-0.123 < \rho < 0.109$
	Search Intention (SR)	0.024(ns)	$-0.090 < \rho < 0.138$
Search	Flow (Flow)	0.555***	$0.478 < \rho < 0.630$
Benefit (BE)	Search Intention (SR)	0.619***	$0.549 < \rho < 0.689$
Flow (Flow) Search Intention (SR)		0.659***	$0.592 < \rho < 0.726$

¹⁾ ns is p > 0 .05(two-tailed test).

<Table 2> and <Table 3> show the results of confirmatory factor analysis. All factor loadings in the <Table 2> are significant (p < 0.001[right side test]). In addition, all Composite Reliability (CR), all Cronbach α, and all Average Variance (AVE) are high and acceptable. Therefore, all constructs evaluated do not involve a problem in terms of the convergent validity (Bagozzi and Yi 1988; Bagozzi, Yi, and Phillips 1991). Discriminant Validity was examined as a confirmation whether or not it includes complete positive correlation (+) 1 or complete negative correlation (-)1 at 99% confidence level (Bagozzi and Dholakia 2006; Anderson and Gerbing 1988). This is an evidence of the discriminant validity.</p>

As confirmed, the results of reliability, convergent validity, and discriminant validity tests indicate product knowledge (PK), brand knowledge (BK), information search cost (Cost), information search benefit (BE), flow (Flow), and information search (SR) are considered as

^{2) ***:} |t| > 2.58, p < 0.01(two-tailed test)

³⁾ About above all correlation, two-tailed test was done because hypotheses were not established.

separate constructs. Then, we can establish the structural equation model and analyze the model based on these constructs.

. Findings

The results of this study are as follows:

<Table4> Result of Mediating Model

Path	Parameter	Hypoth eses	Estimate	Standardize d Estimate	Standardi zed Error	t	Result
BK → Cost	γ 11	H1 (-)	-0.165	-0.186	0.143	-1.159	NOT SUPPORTED
BK → BE	γ 21	H2 (+)	-0.188	-0.208	0.120	-1.568	NOT SUPPORTED
$BK \rightarrow Flow$	γ 31	H3 (+)	0.075	0.079	0.108	0.692	NOT SUPPORTED
$PK \rightarrow Cost$	γ 12	H4 (-)	0.187	0.205	0.146	1.279	NOT SUPPORTED
$PK \rightarrow BE$	γ 22	H5 (+)	0.741****	0.795	0.126	5.873	SUPPORTED
$PK \rightarrow Flow$	γ 32	H6 (+)	0.558****	0.568	0.120	4.640	SUPPORTED
Cost→ Flow	β 31	H7 (-)	-0.100***	-0.093	0.034	-2.933	SUPPORTED
$Cost \rightarrow SR$	β 41	H8 (-)	-0.084***	-0.077	0.033	-2.561	SUPPORTED
$BE \rightarrow Flow$	β 32	H9 (+)	0.214****	0.203	0.043	4.990	SUPPORTED
$BE \rightarrow SR$	β 42	H10 (+)	0.380****	0.355	0.043	8.918	SUPPORTED
$Flow \rightarrow SR$	β 43	H11 (+)	0.522****	0.514	0.044	11.897	SUPPORTED

^{*:} |t| > 1.645, p < 0.05(one-tailed test), **: |t| > 1.960, p < 0.025(one-tailed test)

^{*** :} $\mid t \mid > 2.326$, p < 0.01 (one-tailed test),**** : $\mid t \mid > 3.090$, p < 0.001 (one-tailed test)

Brand Knowledge does not influence Cost, Benefit, and Flow significantly; whereas, Product Knowledge has a significant effect on Benefit and Flow except for the Cost path. Cost influences Flow and Information Search significantly. Benefit also has a significant influence on Flow and Information Search. The role of Cost and Benefit are shown well in this model. Flow has a significant mediating role except for the path between Brand Knowledge and Flow. Finally, this research shows that when people experience flow, they tend to search more.

. Discussion

As shown in the first three columns of Table 1, in terms of Brand knowledge, (Brand Knowledge to Cost, Brand Knowledge to Benefit and Brand Knowledge to Flow), the hypotheses are not supported. This means there are no significant relationships between the constructs. In contrast, however, most of the hypotheses on Product Knowledge (Product Knowledge to Benefit, Product Knowledge to Flow) are supported except for the path from Product Knowledge to Cost. Knowledge, especially Brand knowledge is found to have no significant role in determining information search behavior. However, considering the conceivably important role of knowledge in the search behavior, we need to further examine the roles of knowledge constructs. It is suggested, therefore, that in future studies, we need to divide the respondents into two groups: high-flow group and low-flow group. Both Cost and Benefit are found to have a significant effect on information search behavior. In addition, the paths from Cost and Benefit to Flow are found to be significant. And the path from Flow to Search relationship is significant. This means the more people experience flow, the more they search information.

In the limitations of this paper, we did not study the state of flow while playing online games. We just investigated the characteristics of flow in the online game.

However, in the further research we plan to examine the neural mechanisms of flow using neuroscience experiments such as EEG,MEG and fMRI. By so doing, we will be able to test the state of flow in the real time while people are playing on-line game or web-surfing.

. Managerial Implications

One business implication on the game markets is that flow encourages the development of product designs and game settings to attract customers to purchase their products and services. In addition, flow may be applied to internet shopping and the e-commerce market, navigating websites. When people feel flow while they are navigating the net, people are willing to visit more sites and also to extend the duration of their stay. In other words, they may increase their page view and the number of sites they visit and the duration of visiting. This increase in the duration of their stay may, in turn, lead to more purchasing activities on-line in the e-commerce market.

Bibliography

Saeran Doh, Ph.D.

Associate Professor of Marketing

Department of Food Business Management

School of Food, Agricultural and Environmental Sciences

Miyagi University

Interested area: Neuromarketing, Consumer Behavior, Marketing Strategy,

Social Media and Internet Marketing

Appendices: Questionnaire

<u>Flow</u>		
1. I like p	laying online gan	nes.
Never	Occasionally	Always
	naware of time w	hen I play online games.
Never	Occasionally	Always
	oleasure and fun v	when I play online games.
Never	Occasionally	Always
	ometimes late for	appointments or meal times because of my game playing.
	Occasionally	
	'm liberated from	routine patterns when I play games.
Never	Occasionally	Always
<u>Informati</u>	on Search Cost	
6. I think	collecting online	game information is a time consuming job.
Strongly dis	sagree Not sure S	Strongly agree
7. I think	collecting online	game information is mentally and psychologically taxing.
Strongly dis	sagree Not sure S	Strongly agree
	collecting online	game information physically tiring.
	sagree Not sure S	
	gathering online	game information is costly.
Strongly dis	sagree Not sure S	Strongly agree

Brand Kn	<u>lowledge</u>	
10. I knov	w the online game	brands well.
	Occasionally	Always
	w the differences b	petween similar types of games.
Never	Occasionally	Always
	w the game manuf	acturer's companies well.
Never	Occasionally	Always
13. I know	w the game distrib	utors well.
Never	Occasionally	Always
<u>Informati</u>	on Search	
14. I colle	ect more informati	on about PC games than my friends who play games.
Never	Occasionally	Always
	arch the basic info	ormation about computer games so much.
(manufac	turers, distributors	s, scenarios, etc.)
Never	Occasionally	Always
	game manufactur	rers'/ distributors' websites when I collect game information.
Never	Occasionally	Always
	game related web	communities when I collect game information.
	Occasionally	
	 mv friends or fam	ily about games when I collect game information.
Never	Occasionally	

19. I refer	to books, magazi	nes and newspapers to collect game information.		
Never	Occasionally	Always		
20. I notice	e outdoor advertis	sing (bus, subway, etc) about computer games.		
Never	Occasionally	Always		
21. I refer	to game channels	s on TV to collect game information.		
Never	Occasionally	Always		
22. I refer	to user's reviews	to collect game information.		
Never	Occasionally	Always		
23. I collec	et game informati	ion when chatting with other users online.		
Never	Occasionally	Always		
24. I pay a	ttention to the inf	formation about the game while game information searching.		
Never	Occasionally	Always		
Informatio	n Search Benefit			
25. I feel I	can find out the	items I need while gathering information about games.		
Strongly disa	agree Not sure St	rongly agree		
26. I feel th	hat I could choos	e the characters I want by gathering information about a game.		
Strongly disa	ngree Not sure St	rongly agree		
27. I feel I	could select the	right games for me after collecting game information.		
Strongly disa	agree Not sure St	rongly agree		
28. I think	I could solve que	ests (missions on game) through gathering game information.		
Strongly disa	agree Not sure St	rongly agree		
29. I think	if I continue to	o collect game information, I will find out about newly released		
games .				

	sagree Not sure S	trongly agree
Product K	Knowledge	
	_	out online games than my friends.
	Occasionally	•
	 k I know game pa	ttern well.
	Occasionally	Always
	w each game's eve	ents well.
	Occasionally	Always
	 k I know different	characters' strengths and weaknesses.
Never	Occasionally	Always
	k I know each gan	ne's interfaces (screen composition, operation) very well
Never	Occasionally	Always
	w which game is f	ree and not free.
	Occasionally	
	 k I know game ter	ms verv well
Never	Occasionally	•
		lavina samas
	k I am skilled at p Occasionally	
		niways
The following Gender	wing are general o	questions about you. Please complete each question:
Male	Female	
Age:		

Academic year:

Major:

Your monthly expense on games (including online game cost and internet café fees)?

Approximate amount of time per week for information gathering?

Approximate amount of time you play games?

What kinds of games are you purchasing these days?

References

- Anderson, James C. and David W. Gerbing(1988), "Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach," *Psychological Bulletin*, 103(3), 411-425.
- Bagozzi, Richard P. and Utpal M. Dholakia (2006), "Antecedents and Purchase Consequences of Customer Participation in Small Group Brand Communities," International Journal of Research in Marketing, 23(March), 45-61.
- _____ and Youjae Yi (1988), "On the Evaluation of Structural Equation Models," Journal of the Academy of Marketing Science, 16 (Spring), 74-94.
- ______, Youjae Yi, and Lynn W. Phillips (1991), "Assessing Construct Validity in Organizational Research," *Administrative Science Quarterly*, 36 (September), 421-458.
- Brucks, Merrie (1986), "A Typology of Consumer Knowledge Content," *Advances in Consumer Research, Provo, UT*: Association for Consumer Research, Richard J. Lutz, 13, 58-63.
- Csikszentmihalyi, Mihaly (1975), Beyond Boredom and Anxiety: Experiencing Play in Work and Games, Jossey-Bass.
- _____ (1990), Flow: The Psychology of Optimal Experience, New York: Harper and Row.
- Doh, Saeran (1997), "Prior Knowledge and Information Search," *Japan Marketing Science*, 6(1), 30-46.
- Fornell, Claes and David F. Lacker(1981), "Evaluating Structural Equation Models with Unobservable Variables and Measurement Error," *Journal of Marketing Research*, 18(February), 39-50,
- Ghani, Jawaid A. and Satish P. Deshpande (1994), "Task Characteristics and the Experience

- of Optimal Flow in Human-Computer Interaction," *Journal of Psychology*, 128 (4), 381-391.
- Hoffman, Donna L. and Thomas P. Novak (1996), "Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations," *Journal of Marketing*, 60 (July), 50-68.
- Korzan, Melinda L. (2003), "Going with the Flow:Predicting Online Purchase Intentions," *Journal of Computer Information Systems*, 43 (Summer), 25-31.
- Punj, Girish N. and Richard Staelin (1983), "A Model of Consumer Information Search Behavior for New Automobiles," *Journal of Consumer Research*, 9 (March), 366-380.
- Srinivasan, Narasimhan and Brian T. Ratchford (1991), "An Empirical Test of a Model of External Search for Automobiles," *Journal of Consumer Research*, 18 (September), 233-242.