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Abstract

This paper discusses and extends an approach to analysing efficacy of customer targeting

methods (Courtheoux, 2004). It suggests fitting models to aggregated purchase incidence data

obtained by sorting customers as to their predicted likelihood to purchase. Formulas for

computing the optimal number of target customers and the maximum profitability are derived

for three additional models. These formulas can be used to compare the efficacy of several

customer targeting methods applied to several customer databases.

The initial study, which we try to extend, fitted an exponential function to five selected

published decile tables from direct marketing modelling work (Magidson, 1993; Malthouse,

1993; Ratner, 2001; David Shepard Associates, 1999). Although the exponential function

showed good fit for those selected decile tables, we argue that particular market situations or

targeting methods could be better dealt with by other functional forms than the one described

by the exponential model. For example while widely accepted and theory consistent

predictive targeting models like logit and probit perform very well and often produce

exponential decay in response rates by quantile, newer approaches can achieve better

performance overall, like neural networks, or partially perform better only in the case of the

first quantiles, like automatic tree classifiers (CHAID, CART). The latter by affecting the

same likelihood score to all customers belonging to the same cluster provide less

“granularity” in response rate decay. The number and nature of independent variables can also

affect the shape of the response rate decay. In the direct marketing customer databases,

targeting models that include more variables as for example FRAC-Frequency, Recency, Amount

(of money), and Category (of product) (Kestnbaum, 1998) produce top quantiles that perform

significantly better than the same quantiles for RFM-Recency, Frequency and Monetary

models. All these aspects advocate the introduction of additional functional forms that may

potentially better fit response rate decay by quantile in such cases. Therefore, in this paper, we

introduce three additional functional forms and derive the formulas that compute the optimal

number of customers to be targeted and the maximum profitability for each of those response

rate decay functions. We use those functional forms and formulas to compare and analyse the

efficacy of targeting methods applied to different datasets as well as different methods applied

to the same customer data base. We also show that the additional models suggested by us fit
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better to the datasets used by the original author then the exponential model. Changes in fitted

model coefficients for situations that allow for a statistically reliable breakdown into groups

smaller than deciles are also explored.

Key words: direct marketing, targeting efficacy, optimal file depth, response decay functions

Introduction and Objectives

The «gain chart» or “gains table” (also known as “ranking report”) is a summary table that

regroups for a given quantile level actual and predicted customer response indicators

following the decreasing order of purchase probabilities that have been calculated using a

predictive targeting model (adapted from Levin, Zahavi, 1998). Courtheoux (2004) suggests

that by adjusting an equation to response probabilities from a decile table, that can be seen as

a special kind of gain-chart, and by using formulas resulting through calculus there from to

compute the financial gains of a direct marketing campaign, managers can approximate the

optimum number of contacts to be targeted in order to maximise profits and infer additional

profits that can result when investing in a better predictive targeting model. 

Response rates in a decile table or more generally in a quantile table mark a systematic

decay that can be captured and inferred by adjusting some well fitting decay function. The

exponential function is a typical decay function and has been applied by Courtheoux (2004) to

selected published decile tables from direct marketing campaigns. We argue that other decay

functions can also be used. We introduce five additional functional forms and derive the

formulas that compute the optimal number of customers to be targeted and the maximum

profitability for each of those response rate decay functions. 

 The resulting approach can be used in managerial applications : 

• to  smoothen quantile (decile) tables  

• to interpolate them in order to find the optimal number of quantiles to be

targeted (contacted)

• to test potential financial efficacy of an improved targeting or scoring model or

test   several models. 

As to Courtheoux (2004) decile tables, in general, and the five he mentions, in particular, have

anomalies. For instance a lower ranked decile can have a higher response than its preceding

adjacent decile.  Another author (Hughes, 1995), in a RFM (Recency, Frequency and

Monetary) segmentation context based on quintiles, calls euphemistically this kind of
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anomaly  “cell personality”. This is often due to insufficient number of customers per

quantile. In such circumstances it is convenient to  smoothen those fluctuations in order to

obtain the expected monotone decay. Using finer quantiles than deciles can be considered

when the number of contacts available in such a regroupment unit is sufficient to insure

statistically significant decompositions.

The rest of the paper is organised as follows: In the first section we present a generalised

version of the method and point out and correct some mathematical inconsistencies. In the

second we apply the enhanced method to an artificially generated decile table and present the

marketing analytic and financial indicators the method can produce. The third section extends

the approach by introducing five additional response decay functions and by deriving

formulas to compute cumulative response and profit for different file depths as well as

formulas to find the optimal file depth and the maximum cumulative profit.  The fourth

section fits the five new models to five published decile tables from direct marketing

modelling work and compares the results with those obtained with the exponential model.

Finally some conclusions, limits of the approach and further research are discussed.

Generalising the method and correcting some mathematical inconsistencies

Curtheoux uses an exponential function in order to explain response rate decay by depth

(proportion) of the customer file that is targeted. He uses the following formulation:

 Y= k 1expk 2 Xk 3 (1)

where 

Y = response rate 

X = depth (portion) of file

We suggest a simpler notation that keeps formulas more readable and allows for further

extensions of the approach. It also conforms to notations usually adopted in well known texts

dealing with Marketing Models like Lilien (1987), Lilien et al.(1992), Lilien & Rangaswami

(2004). Y alias f(x) represents the response rate for the average customer representing a given

file depth x. 

 y = f(x) = a exp −bxc (2)
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The coefficients or parameters k1-3 in (1) or a-c in (2) determine the exact shape of the

response decay curve by file depth. There is an upper bound a (or exp(k3)) a lower bound c

(or k1) and a decay acceleration coefficient b (or -k2).
The profit function is the margin times the expected response rate minus the cost per contact

as in formula (3). It represents the profit obtained from an average customer. 

 p=M f  x−C  (3)

where 

p = profit per contact

M = profit amount from an order

f(x) = response rate per contact of depth x

c = cost per contact 

By putting (2) into (3) the profit function becomes

 p  = M a exp−bx c −C (4)

 Since f(x) alias y gives the response rate per contact for any particular file depth x, but not the

cumulative response rate, calculating total campaign profits requires basic calculus. 

The cumulative profit for the whole file P, when the profit is approximated by a continuous

function as the one in formula (3), is given by the indefinite integral of that function. 

 P = ∫M f x−C dx (5)

By putting (2) into (5) the cumulative profit becomes

 P= x M c−C −M a
b

exp −b x  (6)

The cumulative profit for a given file depth D , P(D), per average contact , is given by the

definite integral of the profit function between a lower limit of zero and an upper limit of D.

 P D=∫
0

D

M f  x−C dx (7)

From 7 it can be easily seen that the maximum cumulative profit is obtained where the

response rate attains break-even. When the response rate falls under the break-even rate

profits are negative and cumulative profit diminishes:

 f x=C /M (8) 

By putting (2) into (7) and calculating the definite integral between those limits we obtain

 P(D) = D M c−C M a 1−exp −b D
b

 (9)
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As the response rate diminishes with the file depth, cumulative profit increases as long as the

margin times the response rate is bigger than the cost per contact and should be maximum at a

depth where break-even is attained. Targeting contacts deeper in the list comes with financial

losses. In mathematical terms the maximum value of the cumulative profit (which is the

integral of the profit function) is attained at a depth where its derivative (meaning the profit

function itself) equals zero.

By equaling (4) with zero and solving, the depth (D*) for which the optimal cumulative profit

is obtained is given by

 D* =x*= −1
b

ln C−M∗c
Ma

 (10)

where D* alias x* is the file depth that should be used in order to obtain the maximum

cumulative profit. The optimal cumulative profit P(D*) can then be obtained by introducing

the value of D* into 9. 

The original paper appears to have a major inconsistency at this point. While the formula

obtained for the optimal file depth is equivalent to the one presented in (10) the way it has

been derived is somewhat tautologic. Instead of recognising that the derivative of the integral

of a function is the function itself, Courtheoux computes the cumulative profit function as a

definite integral of the profit function (see Courtheoux , 2004 formula 4) then the optimal file

depth is obtained by solving the differential of that cumulative profit formula (see

Courtheoux , 2004 formula 5) when it equals zero (see Courtheoux , 2004 formula 6) . This

doesn't make much sense as this differential is necessarily the profit function itself that could

have been solved directly. By comparing formulas 3 and 5 in the original paper it can be seen

that the function entering the integral in the first formula is identical to the result of the

differential of that integral in the second formula, although the components of that function

have been written in a different order. Using the second derivative in order to verify that the

optimum cumulative profit point is a maximum ( see Courtheoux , 2004 formula 8) is also

somewhat tautologic as by definition as long as the response rate  is bigger than break-even

(C/M) the cumulative profit is increasing and after break-even it decreases. This means that

the cumulative profit function that is the integral of the profit function itself must be concave

downward and has necessarily a negative second derivative.

Additional indicators of marketing efficacy result from integrating the response decay

function in order to obtain the cumulative response R(D) at a given file depth (D) or the

proportion of persons from the whole file that respond when only a part corresponding to the

file depth has been contacted
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 R(D) = ∫
0

D

f xdx (11)

The cumulative response rate is then obtained by dividing the cumulative response by that

depth (R(D)/D). The number of respondents is the cumulative response times the number of names

in the file

 B(D) = N R(D) (12)

The cumulative percentage of total potential buyers F(D) is R(D)/R(1) or

  F(D) = ∫
0

D

f xdx /∫
0

1

f xdx (13)

The application of this approach to real data will be illustrated in the next section.

Enhanced method application

The application of the method to data from the original paper is illustrated in table 1 and

figure 1. The response rate by decile or more generally by quantile is decreasing and is placed

on the continuum of the file depth at the centre of each decile (quantile). By fitting the curve

given in formula (2) to those data the coefficients of that model are obtained and used to

compute the predicted response rate, profit and cumulative profit.

Table 1 - Actual and Predicted Response Rate and Profitability by decile  

Decile File depth Actual
Response
Rate

Predicted
Response
Rate

Actual
cumulative
Profit

Predicted
cumulative
Profit

1 0.05 4.92 4.921 0.186 0.106
2 0.15 3.38 3.377 0.295 0.251
3 0.25 2.44 2.441 0.357 0.334
4 0.35 1.87 1.874 0.390 0.381
5 0.45 1.53 1.530 0.407 0.405
6 0.55 1.32 1.321 0.413 0.416
7 0.65 1.20 1.195 0.413 0.419
8 0.75 1.12 1.118 0.409 0.416
9 0.85 1.07 1.071 0.402 0.411
10 0.95 1.04 1.043 0.394 0.404
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Figure 1 -  Actual and Predicted Response Rate and Profitability by decile

* rrate=Response Rate, prrate = Predicted Response Rate, profit=Profit, pprofit=Predicted Profit, cumprofit=Cumulative

Profit, pcumprofit=Predicted Cumulative Profit.

Curve fitting the decile (quantile) table – a two steps approach: As the response decay by

quantile is non-linear, a non-linear estimation procedure needs to be used in order to

determine the coefficients of the model. Usually these estimation procedures expect some

initial (guess) values of the coefficients that will be calculated. As under given circumstances

the response rate decay function (formula 2) can be linearised, we suggest the use of a two

step curve fitting procedure. First use linear regression in order to compute initial parameter

estimates which will serve as a start solution for the second step in order to produce final

nonlinear estimates.

If one or two of the three parameters are known or can be approximated from data, the

exponential model in formula (2) can be linearised by using logarithms. These parameters are

usually approximated from upper and lower bound values observed in the data. The linearised

exponential function is as follows:

 ln  y−c=ln a−bln x  (14)
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where the dependent variable y', a substitute for ln(y-c),  is a linear function of the dependent

variable x', a substitute for ln(x). The only parameter that needs to be approximated in

advance is c, that is the lower bound (L) or minimum value and can be taken from existing

data. By applying linear regression to the “canonic” formulation of the regression equation

(see also tables 2 and 3 )  y'=a'+b' x' parameters a' here ln(a) and b' here -b are obtained.

In the second step resulting initial parameters are computed a = exp(a'), b=-b' and c = the

minimum response rate in data (a= 0.06778895, b = 6.13821 and c = 0.0104). The final values

of these parameters will be obtained through non-linear estimation that will further adjust

parameters to real data. We used the nonlinear least-squares package (nls) in the statistical

Software R in order to compute these estimates and obtain  a=  0.05 , b= 5  and c = 0.01. From

table 1 and especially from figure 1 it can be seen that quasi perfect fit between actual and

predicted response rate decay data has been obtained1. 

For the linearisation of other response rate decay functions that we suggested in order to

extend this approach see table 3 in the next section.

Compute and maximise cumulative profit and response: The cumulative profit for a given file

depth P(D) can be approximated by applying formula (7) in general and (9) in particular. 

The optimal file depth is attained at D*  by solving the profit function (3) in general terms and

(4) in particular equaled to zero or by solving the response rate function f(x) equal to break-

even. The resulting value of the optimal file depth D*=0.6444473, meaning that contacting

64.5% of the customers is optimal, is obtained by applying formula (10) and the maximum

cumulative profit P(D*) of $0.4186425 per average customer results by introducing the

optimal file depth (D*) in formula (9). By multiplying this amount with the number of

customers (N=1,500,000, see Courtheoux, 2004) in the campaign database results $627963.8,

the optimal profit of the campaign. 

Additional marketing efficacy indicators result from analysing the cumulative response rate.

From (11) the cumulative response for the optimal file depth is R(D*)=0.01610622, meaning

that 1.6% of all names or that 161062 persons in the file respond. The cumulative response

rate is then R(D*)/D* = 0.2499230 or 2.5%.  The potential proportion of responders in the

whole file (when the file depth is 1 or 100%) is R(1)=0.01999354 or nearly 2%. The

cumulative percentage of total potential buyers for the optimal depth is F(D*) = R(D*)/R(1) =

0.8055712, meaning that by contacting the optimal 64% of the file 80.5% of the potential respondents

order.  

1 This is probably due to the fact that these data taken from the original paper were created as an example

using an exponential function having those parameters.
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Extending the approach to other functions

Courtheoux (2004) fitted an exponential function (formula 1) to five selected

published decile tables from direct marketing modelling work (Magidson, 1993; Malthouse,

2003; Ratner, 2001; David Shepard Associates, 1999). Although the exponential function

showed good fit for those selected decile tables, we argue that particular market situations or

targeting methods could be better dealt with by other functional forms than the one described

by the exponential model. For example while widely accepted and theory consistent

predictive targeting models like logit and probit perform very well and often produce

exponential decay in response rates by quantile, newer approaches can achieve better

performance overall, like neural networks, or partially perform better only in the case of the

first quantiles, like automatic tree classifiers (CHAID, CART). The latter by affecting the

same likelihood score to all customers belonging to the same cluster provide less

“granularity” in response rate decay. The number and nature of independent variables can also

affect the shape of the response rate decay. In direct marketing customer databases, targeting

models that include more variables as for example FRAC-Frequency, Recency, Amount (of

money), and Category (of product) (Kestnbaum, 1998) produce top quantiles that perform

significantly better than the same quantiles for RFM-Recency, Frequency and Monetary

models. All these aspects advocate the introduction of additional functional forms that may

potentially better fit response rate decay by quantile in such cases. Therefore, in this paper, we

introduce five additional functional forms and derive the formulas that compute the optimal

number of customers to be targeted and the maximum profitability for each of those response

rate decay functions. 

At this stage we chose to select and adapt static response functions that are well known in

marketing modelling literature. As most of these are typically growing response functions we

modified them in order to obtain their symmetric decreasing functions using the reverse

process by which the modified exponential function has been obtained from the exponential

function (formula 2). As the values of exp −bx  decrease from 1 to 0 for x increasing

between 0 and the infinity, its extended formulation a exp −bxc  varies between an

upper bound (U) value of a + c and a lower bound (L) value of c, while a can be seen as the

amplitude. Its symmetric function a 1−exp−bx c is the modified exponential

function, a static response function that is well known in marketing. “This functional form has

been used in an analysis of the optimal number of sales-people (Buzzell 1964a), for the study

of advertising expenditures in coupled markets (Shakun 1965), in a probe of advertising
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budget allocation across territories (Holthausen and Assmus 1982), in an investigation of the

effects of channel effort (Rangan 1987), in an assessment of resource allocation rules

(Mantrala, Sinha, and Zoltners 1992), and in the examination of the impact of booth space,

booth location, and number of personnel at the booth on industrial trade show performance

(Gopalakrishna and Lilien 1995)” (Fransens, p.110).

The reverse process by which to obtain symmetric decreasing functions from original

increasing functions can be illustrated by what we call the modified ADBUDG function

a1− xb

cbxb d that has been derived in a similar way from the classical increasing

ADBUDG function a xb

cbxb d . 

The symmetric functions were rather easy to obtain from these two functions, Adbudg and

Exponential, as they belong to the functional form U−L∗g xL , that consist of a sub-

function g(x) varying between 0 and 1 that is premultiplied by what can be called amplitude

(U-L) and has lower bound (L) added. More generally, other response functions like Logistic

and Gomperz functions, be they S-shaped or simply diminishing returns functions, cannot be

reduced to have upper and lower bounds limited between 0 and 1. In this case the symmetric

function is U+L-f(x). Table 2 shows the original growing response functions and their

symmetric response decay functions together with their upper (U) and lower (L) bounds.

Table 2 - Obtaining symmetric response decay functions from well known
response functions in marketing, using their upper and lower bounds

Response function Symmetric function Upper (U) and Lower (L) bounds
Modified

Exponential

a exp −bxc

Exponential

a exp −bxc

U=a+c, L=c, a=(U-L) 

Adbudg

a xb

cbxb d
Modified Adbudg

a1− xb

cbxb d
U=a+c, L=d, a=(U-L)
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Logistic

a
1exp−bcx

Modified Logistic

a a
1exp −b 

− a
1exp −bcx 

U=a, L= a
1exp−b

b=ln  L
U−L 

Gompertz 

abcx

a>0,1>b>0,c<1

Modified Gompertz

aab−abcx
U=a, L=ab, b = L/a

The resulting modified models can be considered as either “reverse-S” shaped models

and/or diminishing loss decay models as their original counterparts were “S” shaped and/or

diminishing return response models. Some simpler additional models like the Fractional Root

model and the Semi-logarithmic model can be included as they can also represent diminishing

loss decay. In marketing literature these last two models have been sometimes classified as

“linear parameter non-linear” models in contrast to the previously evoked models, which are

rather “intrinsic” non-linear. The fact that these two models have linear parameters makes

them easier to estimate by using linear regression. They are simpler to estimate but also

simpler in the sense that they are less flexible when adjusting to data.

In order to initiate the two step parameter estimation process we suggested in the

previous section, a starter estimation of the model parameters should be done using linear

regression. In order to apply linear regression these non-linear models need to be transformed

into linear models, that is “linearised”. In the linearisation process upper (U) and/or lower (L)

bound values will be taken from available data and by applying logarithmation a linear

formulation of the models can be obtained as the ones shown in table 3. Using substitutions

this linear formulation can be reduced to the canonic form needed by the  linear regression

method. Using the parameters of the canonic formulation that are output from linear

regression the coefficients of the nonlinear function can be computed as in  the last column of

table 3. These coefficients will serve as a starting input into the nonlinear estimation

algorithm that will be used.

Table 3  - Preparing the models for linear regression a first step in obtaining
parameter estimates

Models Nonlinear formulation Linear formulation Canonic Coefficients
Exponential  y=a e−b xc ln(y-c)=ln(a)-bx y'=a'+b'x a=exp(a'), b=-b',c=L

Logistic
 y= a

1e−bc x 
ln(y / (a - y))=b + c x y'=b+cx a=U
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Gompertz  y=a bcx ln(ln(a)-ln(y))=ln(-ln(b)) + ln(c) x y'=b'+c'x a=U,b=exp(-exp(b')),
c=exp(c')

Adbudg
 y=a xb

cbxb
d

log((a+d-y)/(y -d))= b ln(c) - b ln(x) y'=c'+b'x a=U-L,b=-b',
c=exp(c'/b),d=L

Modified
 exponential y=a 1– e−b xc ln(a + c – y) = ln(a) – b x y'=a+b'x a=exp(a'), b=-b, c=L

Modified
 logistic

y=a a
1exp −b

− a
1exp −bcxln  1exp −ba

−a1exp−b y
−1=bcx y'=b+cx a=U,

a
1exp−b

M o d i f i e d 
gompertz aab−a bcx ln(ln(a)-ln(a+ab-y))=ln(-ln(b)) + ln(c) x y'=b'+c'x a=U,b=exp(-exp(b')),

c=exp(c')
M o d i f i e d 
adbudg y=a 1− xb

cbxb d
ln((a + d - y)/(y - d)) = - b ln(c) + b ln(x) y'=c'+bx a=U-L, c=exp(b/c'),d=L

Semi-
logarithmic

  y=ab ln x y=a + b  ln(x) y=a+bx'

Fractional
Root y=a xbc ln(y-c)=ln(a)+b ln(x) y'=a'+ bx' a=exp(a')

After the best fit parameters are obtained and the most appropriate response rate decay

model is be selected, formulas that compute the cumulative profit for given file depth can be

used. We derived such formulas for all additional models that we have introduced as shown in

table 4

Table 4 - Formulas to compute Cumulative Response (R)  and Profit (P) at given file depth (D) using different
response rate decay functions

Function
RD=∫

0

D

f  xdx P D=∫
0

D

M f  x−C dx

Exponential Dc a1−exp −b D
b  D M c−C M a 1−exp −b D

b

Modified

Logistic
 aD1

c
ln exp b1

expb  +

D a exp b
exp b1 -

a
c

ln  expbexpc D1
exp b 

M a D1
c

ln  exp b 1
expb   +

D M a expb −C exp b−C
expb1 -

M a
c

ln  expbexp c D1
exp b 

Modified

Gompertz
D aab−a Ei

cD ln b
ln c

*
-
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Modified

Adbudg
D a  2 F 11,1

b
;11

b
;−Dc 

bDd *
-

Semi-

logarithmic

D a−bb D ln D D M a−b−C M bD ln D

Fractional

Root
Dca D

b1

b1
D M c−C M a D

b1

b1

* 2 F1. Hypergeometric function, Ei(.) Exponential Integral 

The integrals for the modified Gompertz and Adbudg models are more sophisticated. They

need numeric calculations for the Exponential Integral function and for the Hypergeometric

function respectively. Therefore for those models no closed form expression to compute the

cumulative profit by file depth is available. Nevertheless the value of these cumulative profit

functions or integrals can be easily approximated using the profit function itself. 

Finally formulas to compute the optimal file depth for al functions are developed and listed in

table 5.

Table 5 - Finding optimal file depth (D*) for different response rate decay
functions

Function D* -Optimal D* in terms of break-even

response rate (B), Upper- (U)

and Lower (L) bounds
Exponential −1

b
ln C /M −c

a
 −1

b
ln  B−L

U


Modified Adbudg cb ad−C /M 
C /M−d 

1 /b

cb U−B
B−L 

1/b 

Modified Logistic −1
c bln  a

a a
exp −b1

−C /M
−1 −1

c bln  B−L
UL−B 

Modified

Gompertz
1

ln c
ln  1

ln b
ln  aa∗b−C /M

a  1
ln c 

ln  1
ln b

ln UL−B
U 

Semi-logarithmic
exp C /M −a 

b  exp B−ab 
Fractional Root C /M−c

a 
1
b
  B−La 

1
b

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Optimal cumulative profit is obtained at a file depth were break-even is attained. Expressing

the formulas for computing optimal file depth in terms of break-even response rate (B) and in

terms of computed Upper (U) and Lower (L) bounds for the response decay functions makes

interpretation of those formulas easier and can also help verify the consistency of the model

parameters that were adjusted from data. For example if M=$25 and C=$1 the break-even

response rate B = C/M = 1/25 = 0.04 must be bigger than the lower bound L in the

exponential and modified logistic model, between the upper (U alias a+d)  and lower bound

(L alias d) for the modified Adbudg model, smaller than the sum of the upper and lower

bound in the modified logistic and gompertz model. Looking for the estimated model

parameters in table 6 shows that they all satisfy these conditions.

Fitting the models to several decile tables

Adjusting the response rate decay functions we introduced to published data from

direct marketing campaigns (Malthouse, 2003) that have originally been used by Courtheoux

shows that the new models fit to those data as well as the exponential model, as can be seen

from table 6 and figure 2.

Table 6. - Response rate decay by decile, real data and fitted models

Decile rrate exp mlog mgom madb

1 0.0871 0.08612666 0.08455444 0.08528013 0.08660732

2 0.0709 0.07394091 0.07502129 0.07464057 0.07341711

3 0.0656 0.06393177 0.06526565 0.06465161 0.06346995

4 0.0592 0.05571045 0.05619056 0.05591321 0.05559298

5 0.0467 0.04895761 0.04846752 0.04865183 0.04916641

6 0.0394 0.04341096 0.04237758 0.04283909 0.04380776

7 0.0401 0.03885505 0.03785779 0.03831056 0.03926284

8 0.0386 0.03511291 0.03465196 0.03485135 0.03535437

9 0.0319 0.03203919 0.03245050 0.03224649 0.03195420

10 0.0281 0.02951449 0.03097213 0.03030521 0.02896708

Fitted

coefficients

 a 

 b

 c

 d 

0.07528

1.96768

0.01790

0.08897

-0.76896

4.41826

0.09054

0.27572

0.04018

0.11505

0.95011

0.68191

-0.01957

Error SS 6.21E-005 7.379e-05 6.688e-05 6.163e-05
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D* 0.5 0.62296 0.5985567 0.6095736 0.6326856

P(D*) 0.32375 0.33155 0.3301125 0.3299713* 0.3316051*

P(D*)/D* 0.532225993 0.551514167 0.541314945 0.52412304
• numerically calculated as no easy closed form expression available

All estimated model parameters in table 6 satisfy the condition that break-even  response rate

(C/M = 1/25 = 0.04) should be between the upper (U) and lower (L) bound levels as indicated

in table 5.

Figure 2 - Response rate decay by decile, real data and fitted models

After the best fit parameters are obtained, the most appropriate response rate decay model

can be selected and formulas that compute the cumulative profit for given file depth can be

used. The optimal file depth (D*) computed using formulas in table 5 , is between 59.9% of

customers for the modified logistic model and 63.3% for the modified adbudg model.

Modified Adbudg being the  model that fits best among available models, it is 63.3% of the

customer list that should be selected. If the customer list contains N=1,000,000 names then

the first 632,685 names in the sorted list should be contacted.

The maximum profit (P(D*)) computed essentially using formulas in table 4 is close to $0.33

per average customer for all models. The inferred profit of the campaign would be

N×P D*  = $331,605 based upon the modified adbudg model.
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The ratio between inferred optimum cumulative profit P(D*) and file depth D* is an inferred

measure of customer targeting method efficacy. The modified logistic model gives the most

optimistic ratio, followed in that order by the modified gompertz model, the exponential

model and the modified adbudg model. After fitting the six suggested models to the five

available decile tables (see table 7) this order remains virtually unchanged with the modified

adbudg model at the end between the semi-logarithmic and the fractional root model.

The above analysis has been pursued to included all available decile tables whose graphical

shape can be seen in figure 3.

Figure 3 - Five selected published decile tables from direct marketing modelling
work

  

The five available decile tables were used to fit the six models that have been discussed

previously (see table 7)

Table 7 - Error Sum of Squares from fitting six models to five decile tables

Model \ Data Malthouse 
«Standard»

Malthouse
 « More »

Shepard Ratner Magidson

Exponential 6.207e-05 3.616e-05 0.0002046 0.0002597 7.605e-06

M. Logistic 7.379e-05 8.798e-05 0.0001987 0.0006768 1.011e-05

M. Gompertz 6.688e-05 5.937e-05 0.0002003 0.0004531 8.838e-06

M. Adbudg 6.163e-05 1.916e-05 0.0002073 0.0034430 4.598e-05
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Semi-logarithmic 0.0001517 2.931e-05 0.0002546 0.0001435 4.776e-06

Fractional Root 0.0004452 0.0001859 0.0004343 0.0001184 3.004e-05

As can be seen from the table showing the Error Sum of Squares which indicates how well

models fit to data, the Exponential Model is by no means the best fitting model to all

situations. For each data set there are at least one or more models that outperform the

exponential model.

The modified logistic model performs best in the Shepard dataset. By carefully looking at

those data in figure 3, one can realise that in that case the response rate decay by decile takes

the shape of a reversed « S » which is precisely the shape of the modified Logistic model,

whose inflection point is exactly at half its upper bound (a/2) . It also involves a constant ratio

of successive first differences of 1/f(x).  

The modified Adbudg model, that can either be “reverse S-shaped” or have simply a

decreasing loss decay, is the best fit for the first two decile tables Malthouse « Standard ». and

« More ». These decile table resulted from the application of two different targeting methods.

The second targeting method, being far better than the first, it captures significantly higher

response rates in the first deciles. By applying formulas in table 4 and 5 for the modified

Adbudg to the two Malthouse decile tables the superiority of the second method becomes

obvious. For the better method optimal file depth is attained by contacting only 595870

persons in order to obtain a profit of $344487 instead of 632685 persons for a lower profit of

$331605 for the other method. A more optimistic interpolation (approximation) is given by

the Exponential model who indicates for the better method a optimal file depth of 565517

contacts with campaign profit $339083 and for the standard method a optimal file depth of

622958 with campaign profit $331554. This last result is almost identical to the one obtained

by Courtheoux (2004).

The semi-logarithmic model fits best the Magidson decile table. All models fit rather well to

this decile table as it starts with a strong decay between the first and the second decile and

then takes a shape that seem reverse S-shaped.

The fractional root models adjusts best to the Ratner decile table. This decile table describes

clearly diminishing loss decay and it also fits well with other similar functions like

exponential and semi-logarithmic.

The relatively unsatisfactory fit of all selected models to the Shepard and Ratner decile tables,

indicates that targeting methods often produce other response rate decay shapes that are nor

diminishing loss curves nor “reverse S” shaped.   
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Conclusions

This paper discusses and extends an approach that uses curve fitting to infer response decay

and calculus to analyse efficacy of customer targeting methods. The approach has been

suggested by Courtheoux (2004). It originally consisted of adjusting (fitting) an exponential

equation to represent response rate decay with file depth and was applied to five published

decile tables from direct marketing modelling work. We give a more general formulation that

can accommodate various response decay curves and several levels of response decay

aggregation, not only decile tables but any quantile tables. We also discuss and correct some

mathematical inconsistencies detected in the original paper.

We extend the approach by suggesting five additional response decay functions that are

adapted from static response functions that are well known in marketing modelling literature. 

These five functions together with the exponential function are then adjusted to the five decile

tables using a two step curve fitting approach that uses linear and nonlinear regression. On the

occasion linear formulas for all six functions are derived by using observed upper or lower

bounds in data.

Calculus based formulas to compute cumulative response and profit for all these functions are

derived, applied and tested using the same datasets (decile tables).  

We give empirical evidence that the Exponential Model is by no means the best fitting model

to all situations represented by available data. This confirms the need to extend the approach

by including several response decay shapes (curves, models)

Also from empirical evidence we conclude that the suggested functions don't cover all

response decay shapes resulting from direct marketing modelling work. This is particularly

true for targeting methods that are capable to produce top quantiles that respond significantly

better than the others. Therefore additional functional forms remain to be introduced by

further research. A simple model that should give satisfactory results is the power series

models as it can take many shapes.

Adjusting relatively simple models to aggregated response decay data and using calculus to

infer marketing response and profitability measures is mainly a managerial artefact. In this

sense it is similar to Little's subjective response based decision calculus and, like decision

calculus itself, it can be accused, as Simon (1994) put it, of being not very scientific. As a

managerial artefact it offers useful tools to perform sensitivity analysis to evaluate the impact

of response decay function parameters on profitability and indirectly to evaluate the would be

additional cost a company should be willing to pay for a better targeting method that would
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achieve response decay characterised by those parameters. A detailed illustration of such

sensitivity analysis using the exponential function can be found in Courtheoux (2004).

As all the empirical work has been done using already aggregated data from published decile

tables further research should apply the approach to disaggregated data from other customer

files, from various direct or interactive marketing campaigns by using varying quantiles

corresponding to various levels of aggregation and verify the precision that can be obtained

by this curve fitting approach.
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