
Web based technologies for model-driven decision support and
simulations. Application to a dual marketing model.

Michel Calciu

Maître de Conférences

LEM – IAE - Université des Sciences et Technologies de Lille

104 av. du Peuple Belge 59043 Lille

 michel.calciu@univ-lille1.fr

1

Web based technologies for model-driven decision support and
simulations. Application to a dual marketing model.

Abstract
Based upon a dual marketing model we discuss how web based technologies help manage

complexity of building decision support and simulations and accelerate their advance to the

market. Some building frameworks are discussed. Several traditional web solutions are

revisited, applied and compared. New ways of embedding models (models as documents,

models as services etc.) are explored. This paper discusses and illustrates the possibilities of

newer modelling approaches, and decision support designing and development technologies

and tries to familiarise marketing modellers with new IT infrastructures for distributed

applications. In this way we try to help “retooling: traditional marketing modellers” in order

to get their models used on a larger scale.

Key words: marketing modelling, decision support, decision calculus, object

orientation,internet

2

Introduction
Despite a long tradition in quantitative research in marketing and important accumulations of

models, little diffusion of models and their implementations as decision support systems

(DSS) can be observed.

As to Little (1970, p. B-466) “the big problem with models is that managers practically never

use them”. This situation seems not to have changed a lot ever since. "Even several decades

after the earliest operational marketing models were first introduced, their impact on practice

remains far below its potential" (Eliashberg & Lilien, 1993, p.19). Lilien & Rangaswami

(2008, p.527) refer to ‘‘the gap between realized and actual potential for the application of

marketing models’’. This means that “Many fewer models are actually used than are

developed” (Lilien & Rangaswamy, 2000, p.233).

The most frequently mentioned causes for this low adoption of marketing models are low

productivity in building and implementing models and bad communication between

researchers and mangers.

Building problem specific models and making them operational still remains not very

productive, the required effort in order to obtain useful results seems excessive.Multiple

qualifications are needed, as these models have a triple representation (Geoffrion, 1987) a

natural one, convenient to the communication with modelling non-specialists, a mathematical

one, suited for development and analytical use and an "informatics" or computer executable

one.

The lack of interest exhibited by managers, that has been often mentioned, is due to the non

understanding of models and to a dependency perception of the manager towards the analyst.

The sentiment of dependence makes the manager feel uncomfortable because less powerful.

Another difficulty is based on the fact that managers often feel that the analysts have

insufficient knowledge about their field.

The manager’s lack of comprehension is often due to bad communication with analysts who

are perceived as too “techno-centric” instead of being “problem centric”.

Both DSS building and communication are significantly facilitated by new web-based

information technologies. Although IT advances have shaped Marketing Decision Support

Systems (MDSS) extending their use from structured, and semi-structured problems to

weakly-structured ones as shown by Wierenga and van Bruggen (1997), marketing scientists

seem to give little importance to information technologies (IT).

Newer IT based data collection and modelling techniques have taken too much time to be

3

adopted placing marketing scientist in great risk to become marginalised as thought leaders in

these fields. Tracking customer behaviour over the Internet or recording such behaviour

through loyalty cards and real world experiments observing such behaviour are largely

computer science dominated. Newer modelling techniques, such as Bayesian networks, neural

networks, and data mining have also been actively developed and tested in other areas before

being embraced by marketing modellers.

Most traditional marketing models have neglected factors that enhance how the models will

be used. “Increasingly, models that do not design in features that take advantage of the

distributed and data-rich context provided by the Internet ... will become irrelevant: they will

not get used, and will have diminished importance to future developments in the modeling

field. To develop models that do get used, modelers must pay attention to the IT-infrastructure

under which their models will be used.” (Lilien & Rangaswami, 2000,p232)

This paper discusses and illustrates the possibilities of newer modelling approaches, and

decision support designing and development technologies and tries to familiarise marketing

modellers with new Web-based infrastructures for distributed applications. In this way we try

to help “retooling: traditional marketing modelers” in order to get their models used on a

larger scale.

We base our demonstration and application of those technologies on a simulation and decision

support system build upon a stylised model that combines transactional and relationship

marketing aspects. A multi-branded offer from multiple companies that generates attraction

and retention potential is confronted to a multi-segmented demand with specific dual response

behaviour. Dynamic market transitions model loyal and versatile customer flows in time.

Based upon this simple model we discuss how a progressive modelling approach that uses

object orientation can help decompose and recompose marketing problems by managing

complexity in order to produce realistic modelling solutions and accelerate their advance to

the market. Some implied model and decision support building frameworks are discussed.

Several traditional web solutions are revisited, applied and compared to some more recent

XML based semantic web technologies. New ways of embedding models (models as

documents, models as services etc.) are explored.

Traditionally DSS were built and delivered using general-purpose development software.

Today many model-driven DSS are built using DSS generators [Sharda & al., 1988]. Sprague

and Carlson 1982 defined a DSS generator as a computer software package that provides tools

and capabilities that help a developer quickly and easily build a specific Decision Support

System. They often constitute environments on which DSS are based upon. Power & Sharda

4

(2007) distinguish Spreadsheet based-, Web based- and Group DSS. In this paper we focus on

a Web based marketing decisions support and simulation system.

A stylised marketing model

We introduce a stylised marketing simulation model combining transactional and relationship

marketing, the two paradigmatic dimensions coexisting in nowadays marketing strategy. The

mathematical formulation of the model is given in the appendix.

In this model, transactional marketing mix is represented by brand positioning and

repositioning strategies supported by traditional communication activities. The market is a

perceptual space governed by gravity laws. Brands are positioned and exert attraction upon

customer segments who have mass and "ideal point" positions in the market space.

Relationship marketing mix is represented by three activities and their corresponding budget

headings: interactive marketing activities (e-commerce and/or direct marketing), customer

retention through quality/satisfaction programmes and loyalty programmes aimed to increase

switching costs (loyalty cards, frequent flyer programmes etc.). A comprehensive review of

loyalty programmes can be found in Meyer-Waarden and Benavent (2001).

Each positional segment has relationship sub-segments (key and non-key customers) with

variable responsiveness to transactional and relationship mix efforts. Key customers tend to

be more sensitive to relationship mix incentives than non-key. Market share results from a

subtle transition mechanism governed by attraction and loyalty: new customers come into the

market, others leave the market, some become loyal and others turn “versatile”. Market

Segments response to marketing efforts is dual. It results in loyalty and perceived

attractiveness. Traditional, transactional marketing mix activities generate primarily attraction

while newer relationship marketing mix is supposed to generate customer retention and

loyalty. Loyalty toward a brand is measured as the proportion of “hard core loyal” customers.

The distinction between "hard-core loyals" and "potential switchers" was first used in

marketing by Kuehn (1961) and more recently by Colombo and Morrison (1989) and Bultez

(1996, 1997). Key and non-key segments have their own response function and varying

reactivity to marketing mix efforts. The reactivity to "retention mix" is modelled to be

stronger than the reactivity to offensive marketing. It uses the generally accepted assumption

that it is less costly to keep existing customers than to attract new ones.

The customer flows from one period to the other between a given brand and the market are

shown by the transition diagram in Figure 1 and are controlled at the market-segment level by

a markovian process adapted from Bultez (1996, 1997)..

5

Figure 1. Customer flows from and to a brand

There are two kinds of repeat buyers: hard core loyal customers and regained switchers. The

customers gained from other brands and those lost to other brand are also considered to be

switchers. Market entry and exit is modelled using a combination of market specific renewal

and growth rates. The renewal rate is constant and indicates the number of quitting customers

that are replaced by new ones as compared to the total number of customers. The growth rate

can be positive when additional customers enter the market and negative when additional

customers leave the market. Both renewal and growth rate are exogenous values, given in a

predetermined scenario.

Progressive modelling philosophy, object orientation and document based
programming
Before discussing technology it is useful to understand some conceptual model building

frameworks that advocate flexibility and facilitate implementation.

Historically decision calculus (Little, 1970) is the first such framework and probably the only

one originating from the field of marketing. Decision calculus is a model building philosophy

that fixes a set of conditions that models have to satisfy in order to be used by managers. It

insists mainly on model formulation aspects. Models should allow subjective parameter

estimation by managers (see figure 11). Models must be "simple, robust, easy to control,

adaptive, as complete as possible and easy to communicate with" (Little, 1970, p. B-466). A

model must start simple and easy to control in order to be understood and to attract the

managers interests. This does not mean that the model should be simplistic, it still has to be a

good abstraction for the real problem and it must be able to evolve and grow in complexity.

Object orientation (OO) is a way to analyse and build complex systems and decompose them

into logical (classes and objects) and physical (processes module architectures) models with

their static and dynamic interactions. It is largely used in computer science and became

6

standard on the World Wide Web. As a systems analysis tool it marked an important evolution

compared to the traditional procedure oriented approaches.

Using object orientation and document based technologies to decompose the system into
entity abstractions
A system like the one evoked here can be decomposed into a reduced number of categories or

classes (economy, market, firm, brand, customer segment etc) using abstraction (highlighting

essential properties), encapsulation (hiding detail), modularity and hierarchy. In the class

diagram in figure 2 we illustrate o hierarchy of containment and association relations between

entity abstractions.

Figure 2 - Class diagram of a stylised marketing system

It uses the unified modelling language (UML) approach, a standard developed primarily from

two formalisms for object-oriented modelling - OMT Rumbaugh et al. (1994) and Booch

(1994). As can be seen from the class diagram, in this rather stylised simulation the economy

(Game) contains firms (Player) and markets (Market). Firms have brands (Brand) and markets

are composed of customer segments (Segments). Markets (Market) have Segments (Segment)

and Response. During each simulation period firms take decisions (Decision). After each

decisions round the simulation advances to the next period by calculating and adding new

brand and segment states (Bstate, Sstate).

Object orientation is not only integrated in many modern computer programming languages

but also in some data base management systems and even in document based approaches like

7

XML (eXtensible Markup Language). XML technologies bring modelling logic much closer

to documents. An XML document uses markup to identify content so that information can be

easily classified and machine read. Well-formed XML documents organise markup elements

and the information they contain in a tree structure. They follow the Document Object Model

(DOM) and can be parsed or read into memory to form a hierarchy of objects. Serialisation is

the reverse process by which an objects' hierarchy from memory can be transformed and

written into an XML document. The analogy with object oriented programming goes further.

As object types are defined by classes, mark-up and the hierarchical structure to be used in an

XML document can be predefined in order to produce a valid document. This can be done

using the non-xml type documents called DTD (Document Type Definion) or xml type of

documents called XSD (XML Schema Description). Figure 3 illustrates how the DTD defines

the object structure of our simulation and of the xml document that persistently stores all

information.

Figure 3 DTD (Document Type Definition)
<!ELEMENT Game (name,noplayers,needed,nomarkets,period,Player+,Market+)>
<!ELEMENT Player (name,password,eMail,budget,gain,period,Brand+)>
<!ELEMENT Brand (name,xNat,yNat,period, Decision+,BState+)>
...

It clearly results that a simulation game contains one or more players and markets, that a

player has one or more brands, that a brand has one or more decision and state objects etc. An

example of an xml document defined in this way and that contains all information concerning

the simulation after two periods is shown in Figure 4

Figure 4 Xml data binding the g<gamename>.xml file

8

In another paper (Calciu & Popa, 2010) we suggests a document-based framework for

building marketing decision support and simulation systems. This framework transfers most

of the marketing model implementation work to documents. It replaces many computer

language programming tasks by human readable documents leading to increased separation of

concerns and acceleration of model access to the market. The framework uses what we call

document based programming. It essentially applies recent xml document technologies, like

xslt transformations, xml data- binding, xml-schemas to replace programming tasks by

standard automated processes. Some of these documents, by generating a combination of

UML diagrams specify a complete model of an application. Using appropriate tools that often

are regrouped in a modelling framework1 part of or, in simple cases, all of an application can

be generated.

Modelling customer response as an object oriented hierarchy of abstractions
Response is central to marketing, each marketing action aims to generate response at

“individual” segment level in terms of attitudes, preferences, buying intentions or at market

level in terms of market share. The modelling of response offers the occasion to apply and

illustrate a special kind of hierarchy based on inheritance in which more complex classes

evolve from simpler ones by inheriting their properties and methods and adding new ones. It

mimics an evolutionist complexification process as illustrated in figure 5.

Figure 5 – Inheritance based hierarchy of response models

réponse_0
générique

retard mémoire motif
réponse_11 réponse_12 réponse_13

réponse_21 réponse_22 réponse_23 réponse_24

promotion publicité prix
force
de
vente

classe
de base

classes
dérivées

publicité mix
relationnel

always
a share

lost for
good

niveau
physique

niveau
agrégé

niveau
individuel

niveau
marketing

Simple response models evolve towards more complex ones by adding dynamic effects like

1 We used the Eclipse Modelling Framework.

9

temporal delay and motifs or memory effects. These specialised response classes combine

further in the hierarchy to produce distinct response classes (models) for each marketing mix

element. For the relationship mix this evolutionary process continues at individual customer

level by adding behavioural dynamics (“lost for good” and “always a share”).

Our progressive response based modelling approach is particularly fit for a category of

models called aggregate response models. An aggregate response model “seeks to relate sales,

share, distribution, or other criterion variables directly to the marketing actions involved”

(Little, 1975 p.633). In this category of models one can find marketing decision support

models like CALLPLAN (Lodish, 1971), BRANDAID (Little, 1975), STRATPORT (Laréché

& Srinivasan, 1981,1982) or SCAN*PRO (Wittink et al., 1988) but also model based

marketing simulations like Markstrat (Laréché & Gatignon, 1990) and the dual marketing

model presented in this paper.

Deploying MDSS over the Web
Definitions and early arhitectures
In 1966, Kotler introduced the concept of a ‘‘MarketingNerveCentre’’, providing marketing

managers with ‘‘computer programs which will enhance their power to make decisions.’’

(Wierenga & al., 2008, p. 561)

The concept of marketing decision support systems (MDSS) has been introduced by Little

(1979) and defined as a ‘‘coordinated collection of data, systems, tools and techniques with

supporting software and hardware by which an organization gathers and interprets relevant

information from business and environment and turns it into an environment for marketing

action’’ (p. 11).

Wierenga & Van Bruggen (1997) used the term ‘‘marketing management support systems’’ for

systems additionally supporting marketing decision-making in weakly-structured areas that

are primarily qualitative, and knowledge-driven.

In a model-driven decision support system quantitative models are the dominant components

that provide the primary functionality. They differ from communications-driven, data-driven,

document- driven and knowledge-driven DSS (Power, 2002). They allow to manipulate model

parameters in order to examine outputs in more (sensitivity analysis) or less (ad hoc “what

if?” analysis) systematic way. Model-driven DSS differ from the computer support used for a

decision analytic or operations research special decision study at least in two points: first a

model in a model-driven DSS is made accessible to a non-technical specialists and second it is

intended for some repeated use in the same or a similar decision situation (Power & Sharda,

10

2007).

Little (1979) suggested one of the best known MDSS frameworks, it is based on the so called

DDM (Dialogue, Data, Model) paradigm of Sprague and Carlson (1982) that formed the

dominant architecture for DSS from the sixties throughout the eighties (Eom, 1995). Little's

framework that we adapt here for web-based decision support (see Figure 6) has, besides the

interface with the manager, four main components: models, data, statistics and optimisation.

While the model component solves semistructured marketing problems it can access the

statistics and optimisation component in order to solve structured problems.

Web-based architecture for marketing decision support and simulation systems
Web-Based DSS advantages and disadvantages

The web is at this moment one of the best accepted interfaces by users. Managers like to

see DSS implemented in environments they are familiar with. It's not rare to see people

wasting hours trying to solve problems on spreadsheets, that could have been instantaneously

solved using more specialised statistical software. The web is probably the software

application with the largest and fastest adoption ever and with which managers are most

familiar. Besides making the Internet usable by non-scientists the Web was noteworthy in its

author's view (Tim Berners-Lee) for turning what had been a rigidly hierarchical tool (digital

computers) into a device that may eventually make the sort of loose associations that our

brains do (Berners-Lee, 1993). “the Web and the HyperText Transfer Protocol - HTTP – that

underlies the communication of data on the Web have become a vital part of our information

network and day to day environment.” (Lang, 2007, p.1). Estimates of the proportion of data

sent via HTTP range from 31% to 75% Claffy and Miller (1998), Spr (2004). This is very

convenient if managers want to use their own data when they engage in getting decision

support over the Internet.

Some advantages web based DSS are: ease of use; collaboration facilities; flexible licence and

deployment modes; model reuse; cross platform capabilities; controlled access; wide

availability; versioning, customisation and maintenance; integration and operability

Eventual disadvantages can be: loss in speed; graphical user interface limitations; security

vulnerability; stability potentially affected by disappearance of a site hosting a distributed

component; licensing restrictions. For more details concerning these advantages and

disadvantages in the field of web based simulations the reader could refer to Byrne & al.

(2010).

Web-based component structure

The web based component structure we suggest in this paper adapts Little's (1979) historical

11

MDSS framework by integrating web-based component technologies within that framework's

interface and model-base component. These technologies that are listed in figure 6 will be

more thoroughly discussed later in this document. The other components data, statistics and

optimisation refer to specialised software categories that help solve structured problems

issued by the model component when dealing with a semistructured problem. The integration

of web based technologies within those specialised software categories is well documented

and will only marginally be dealt with here.
Figure 6 – Web based Marketing decision support systems in a universe of distributed objects

Client
tier

DATA (Data base & legacy systems) OPTIMISATION
 (OR)

STATISTICS

MANAGER

ENVIRONMENT

Universe

Web
tier

Business
tier

Java EE
Server

MODELS

While there is a certain convergence in the evolution of web based applications development

and implementation platforms, the technologies used by them are rather different and

complex. Therefore adopting such a platform is a long term choice. A modern web based

architecture needs to be component based and distributed. Components are the natural

extension of objects (see object orientation) and are particularly well suited for distributed

computing.

Syzyperski (2003) defines a software component having to be a unit of deployment and

independent of one another and communicate only by defined means. Bertoa et al. (2006)

state that the component-based software development approach tries to improve the

flexibility, reusability and maintainability of applications, helping develop complex and

distributed applications deployed on a wide range of platforms, by plugging prefabricated

software components, rather than building these applications from scratch. Although

distributed applications preceded the Web, the Web is now influencing distributed

applications. As computing environments are becoming more distributed and heterogeneous,

12

middleware technologies are emerging that offer standard infrastructure to deal with the

interoperability of such applications.

A the time of this writing there are two main platflorms for building and delivering Web-

based application in general and DSS in particular Microsoft's COM+ and Sun's EJB both are

considered as transactional component middleware (Britton & Bye, 2004). The key

components of Sun's Java Enterprise Edition and Microsoft's .NET web development

platforms are presented in figure 7.

Figure 7 Java EE and .NET Architectures

Source: Byrne & al (2010) adapted from (Kachru & Gehringer, 2004)

Our choice of the Java based platform is guided by the need to favour MDSS diffusion and

our criteria are openness, availability, portability and recognition by the computer science

profession. Marketing DSS “once written” in Java can be “run anywhere”. The Java

programming language, with its portability, object-oriented model, support for multithreading

and distributed programming, and garbage collection features, is becoming the language of

choice for the development of large-scale distributed applications. (Kazi et al., 2000).

Openness, the possibility to have clear insight on software building blocks, is extremely

important for the whole Internet community who doesn't like to see parts of this

interconnected world be colonized by proprietary software and locked up in software patents

percieved as bariers to rapid software evolution. Openness is also an argument for managers

who don't like to be tied up in their relation with the marketing analyst to adopt MDSS.

Availability is the possibility to use the product (and its updates as soon as they are launched).

Portability regards the resulting DSS that should function on different hardware or be easily

13

transformed in order to achieve this goal.

Lilien and Rangaswamy (2000) suggest a classification of MDSS (marketing engineering)

models that can be deployed on the World Wide Web and accessed over the Internet. To the

original two criteria degree of integration and degree of visibility we add the so called client-

server dimension. We distinguish between local, remote and hybrid MDSS. When both the

visual (interactive) logic and the model logic are concentrated on the client computer the

application is local. When both are on the server it is “remote” and when the visual logic is on

the client and the model logic is totally or partly on the server it is hybrid. In figure 8 we try to

illustrate how this classification applies to the models presented in this paper.

Figure 8 Marketing models classified by degree of integration and degree of visibility

Source: adapted from Lilien and Rangaswamy (2000,2008)

As to this classification the model based marketing simulation we have presented is an

integrated system of models as it combines visually the core simulation with a series of

MDSS that can also function as standalone models. Such visual standalone applications are a

response forecasting model, a decision calculus applet, a conjoint analysis and an optimal

positioning system that are implented as local or hybrid applications and will be presented

later. Embedded models are for example the java components that define segments' response

behaviour whose object oriented complexification approach has been discussed before. An

integrated embedded model is the markovian transition model that governs market behaviour

and controls customer flows from and within each positional segment depending on key and

non-key customers' response models.

As -ceteris paribus- visible models are more complex than their embedded counterparts, as

they add to the hidden core behaviour interactive and visual elements, the remaining part of

the paper will discuss web based technologies applied to visible local, hybrid and remote

MDSS.

14

Web based technologies applied to visible local, hybrid and remote MDSS

Hybrid models
The Internet is based on the client–server computing architecture. The manager using a client

application the browser can access data or software applications like marketing models,

statistics or other structured problem solving software located on servers anywhere in the

“universe”. This de-coupling of software pieces and data that traditionally were integrated and

run on the same computer, brings much flexibility in the use of models. With the browser, a

familiar universal tool, as as an interface, the manager can combine data and models from

different sources in order to solve problems. In order to support distributed web applications

the Java technology evolved progressively from browser and client side towards server side

components by populating several tiers of what has evolved as a continuously growing

distributed objects application framework and platform. Figure 7 tries to illustrate the

composition of those tiers and to populate Little's original framework scheme.

A typical hybrid MDSS has its visual interface on the client side and the hidden model logic

on the server side. Our simulation is such a hybrid application. The client tier is the manager's

interface with the MDSS application. It uses the web browser as a “thin client”2 reading web

pages with a limited calculation capacity, relying essentially on the browser integrated

scripting languages (like Javascript) and applets as client side java applications that can be

embedded and are downloaded with a web page).

2 A Java application can use a thin browser-based client or thick application client. There are trade-offs

between keeping functionality on the client and close to the user (thick client) and off-loading as much

functionality as possible to the server (thin client). The more functionality one off-loads to the server, the

easier it is to distribute, deploy, and manage the application; however, keeping more functionality on the

client can make for a better perceived user experience. Thin clients usually do not query databases, execute

complex business rules, or connect to legacy applications.

15

transaction-oriented enterprise application3. Enterprise beans are typically deployed in EJB

containers and run on EJB servers. Our simulation's core behaviour is encapsulated in non-

visual Javabeans derived from the hierarchy of entity abstractions that form the class diagram

in figure 2. They form a middle "business-logic" layer meant to buffer the presentation logic

from the data-access. Business logic in this application encapsulates at least three separate

tracks, game logic, internal model logic and persistence logic.

Persistence logic allows beans to connect to a database through a JDBC driver. The database

is managed by a database server. It contains tables where business logic information,

structured as bean properties, is persistently stored. Besides domain and application specific

behaviour, Beans have also persistence behaviour enabling them to create a persistent state by

inserting new records in database tables and load or store their properties that need to be

persistent from or to the corresponding table records. In this application most of the beans

representing Economies (or Games), Companies (or Players), Brands, Segments etc. have

corresponding tables in the database, where their persistent state is kept.

The simulation is organised as a marketing game, that although minimalist, covers all

important aspects of marketing. T h e game logic is rather generic, it introduces several

important topics like security, registration, authentication, session management, cookies etc.

This logic is mainly encapsulated in the Game and Player Bean.

The model logic is application specific. The behaviour concerning this logic is integrated to

the Brand, Segment and Market Bean. Brand beans represent the offer, segment beans express

demand and integrate response behaviour and the market bean aggregates offer and demand

and manages at this higher level response and transition mechanisms. The market bean

integrates and embeds most of the logic from other components (beans)

Local web based MDSS
In local web based MDSS both the visual and the model logic are downloaded seamlessly by

the client (web browser) to the user’s local computer. The responsibility for execution shifts

completely from the server to the client. The server simply becomes a central distribution

point for the simulation without performing any real work.

Historically it was common to use Java applets in such situations. They can be embedded in

web pages and use computing power on the client-side from a virtual computer the Java

Virtual Machine (JVM) that was traditionally linked to the web browser.

3 There are three types of enterprise beans: session beans, entity beans, and message-driven beans. Entity beans

contain persistent data and that can be saved in various persistent data stores. Security and interoperability

with other Java or non-java applications are high issues in the business tier.

17

Applets although qualified as relatively small applications can support useful decision support

on the client side, as for example the applet in figure 10 that finds the optimal positioning for

a brand in a three dimensional perceptual space (see Calciu and Vermeersch, 2003).

Figure 10. – Applet finding the global optimum positioning of a new brand in a 3D perceptual
space

The buttons and other interface objects on the right hand side of the applet are Javabeans, a

special kind of classes that are self instantiating meaning that they have a constructor method

(empty constructor) generating objects with default properties. Javabeans are components4.

While most visual components in this applet are provided by a java graphical user interaction

(GUI) library, the component showing the market share in the middle of the right hand side

has been specially developed by us for this applet. It has been obtained by multiple

inheritance from classes like arc of a circle and text label. At the beginning when the web was

used as hypertext medium and was not very good for software applications, applets offered

the first professional GUI5. This has fundamentally changed with the adoption of AJAX

(Asynchronous JavaScript + XML) and the continuous improvement of graphical capabilities

of web browsers that crystallise around the emerging HTML 5 standard. As a result,

glamorous user interaction facilities can be implemented using open-source Javascript

libraries (jQuery, ExtJS). We illustrate this with a tool, we have developed, that gives decision

4 A component is a self-contained functional software unit that is assembled into an application and that

communicates with other components.

5 Although applets tend to become obsolete in web-pages, and the applet tag has been omitted in HTML5,

applets remain the only tool with which one can do “anything” in client-side web-applications, while newer

HTML5 and AJAX technologies can only do “many things”

18

makers the opportunity to visually indicate market response to marketing efforts by subjective

estimation or decision calculus as in figure 11 and with a triple view as a relative response

index, as sales or as profit.

Figure 11 – Local decision calculus application using AJAX with jQuery

The page layout is dynamically generated in html using div layers with appropriate id and

class attributes in order to be easily identified by jQuery's powerful DOM querying

expressions. As long as none of triple view options is selected only the main options panel and

an empty plot panel are visible the other panels are hidden by jQuery commands. When one

option is selected the other panels become visible and the user can change response

parameters and select a plot type. Both local applications presented in this section are

standalone MDSS.

Remote models
In remote MDSS, both the visual and model logic are located and execute remotely, on the

server-side. Access to these is through a browser which is a thin client. This is similar to a job

request on a batch processing system. Parameters are submitted to the simulation engine

through the Web server, and results are returned to the user once the simulation has finished

running. The visual results generated by the server can be transmitted to the graphical

interface in the browser using, for example, Common Gateway Interfaces (CGIs), sockets,

19

Java remote method invocation (RMI), JavaBeans, Common Object Request Broker

Architecture (CORBA), remote procedure call (RPC) or via front-end applications.

We have developed a batch version of our marketing simulation that uses two XML

technologies: XML data-binding and XSLT document transformations in order to prepare the

visual logic of the application on the server-side.

XML data binding refers to the process of representing the information in an XML document

as an object in computer memory and vice-versa. An XML data binder accomplishes this by

automatically creating a mapping between elements of the XML schema of the document we

wish to bind and members of a class to be represented in memory. In this way the whole

complexity of using files to input and output data when building applications becomes

transparent. Transferring memory objects to an XML document is called marshalling, and the

reverse action is called unmarshalling6 . The XML schema of our simulation is automatically

generated from DTD document presented in figure 2 it prepares the xml binding process

which allows the application to read (unmarshall) uploaded xml files containing players'

decisions and after processing a simulation period to output (marshall) simulation results as

xml files as the one illustrated in figure 4.

The visual part of the application is prepared using one of the most exciting XML

technologies the Extensible Stylesheet Language Transformation (XSLT). It is a standard way

to "transform" an XML document into another XML document by associating an XSL style-

sheet that contains the transformation rules. In our simulation by associating various XSL

style-sheets located on the remote server the xml file presented in figure .. is transformed into

web pages (xhtml files) that display on the browser media rich information extracted from

them. Decision makers will be able to see information concerning firms, brands, segments and

customer flows in visual and/or tabular form. Some examples are shown in figure 12.

6 Marshalling is for a hierarchy of memory objects what parsing is for a hierarchy of xml tags. While

marshalling and unmarshalling needs valid xml documents, parsing and serialisation uses only well formed

xml documents

20

 Figure 12 information extracted by xsl stylesheets from a game's xml file

(a) positioning tables (b) positioning map (c) attraction, loyalty index

An advantage remote applications is that larger MDSS can run on powerful, high-end

computers and analysts or decision makers can get access to the results with a browser. Web

services are a well adapted technology to invoke such applications programmatically over the

Internet. Web services are self-contained, self-describing, modular applications that can be

published, located, and invoked across the Web. 7 Each of these self-contained services is an

application that can easily integrate with other services, from the same or different companies,

to create a complete business process. This interoperability allows to dynamically publish,

discover, and bind a range of Web services through the Internet. The following standards play

key roles in Web services: Universal Description, Discovery and Integration (UDDI), Web

Services Description Language (WSDL), Web Services Inspection Language (WSIL), Simple

Object Access Protocol (SOAP). Marketing Decision Support Models (MDSM) and Systems

7 Web services are self-contained. On the client side, no additional software is required. A programming

language with XML and HTTP client support is enough to get you started. On the server side, a Web server

and servlet engine are required. The client and server can be implemented in different environments. It is

possible to Web service enable an existing application without writing a single line of code.

Web services are self-describing. The client and server need to recognize only the format and content of

request and response messages. The definition of the message format travels with the message; no external

metadata repositories or code generation tools are required.

Web services are modular. Simple Web services can be aggregated to form more complex Web services either

by using workflow techniques or by calling lower layer Web services from a Web service implementation.

Web Services are platform independent. Web services are based on a concise set of open, XML-based

standards designed to promote interoperability between a Web service and clients across a variety of

computing platforms and programming languages.

21

(MDSS) deployed as webservices and/or published in Universal Description, Discovery and

Integration (UDDI) registries can easily be discovered by managers and used in a personalised

way to solve problems.

Conclusions
Marketing scientists while having good knowledge in statistics, econometrics, operations

research, seem to have poor knowledge in modern programming and IT. This was not always

so and is rather invalidating at least as concerns diffusion and adoption of marketing models.

At the beginnings of MDSS, which somehow coincided with interactive computing, it was not

rare to see MDSS implemented by the analysts themselves using some programming language

(like BASIC). With the advent of micro- and personal computers and the era of office

automation, spreadsheets and their “macro” programming language were often used to

implement MDSS (Lilien, 1987, Calciu & Benavent, 1995). Paradoxically those technologies

have captured marketing scientists' attention while these newer web based ones have not. Our

paper tries to change this situation. It presents model building and implementation

philosophies, frameworks and technologies and demonstrates solutions by using prototypical

marketing models. We try to show how paradigmatic changes in systems development

philosophy can affect MDSS development.

In order to facilitate understanding we present a simple but in some sense complete and rather

generic marketing model. It contains essential marketing metaphors and can be used to

illustrate each technology. We suggest that this model could serve as a common denominator

for some marketing scientists community who would like to learn, apply or demonstrate

modern technologies and concepts affecting MDSM implementations over the Internet.

Our approach although on purpose not very sophisticated on the modelling components side is

rather up-to-date as concerns IT infrastructure favouring model use. Before introducing some

selected technologies we first tried to provide some guidance and criteria for choosing

technologies and explained the reasons of our choice.

We also tried to match familiar model development and implementation approaches having

their origin in marketing with newer, more general approaches from computer science. Some

links are highlighted between decision calculus and object orientation or between a classical

MDSS development/deployment scheme and some recent distributed components

architectures.

We chose the Multitiered Java Web Applications environment for its portability, openness and

completeness, the XML document based modelling for its elegance and possibilities to reduce

22

programming efforts in producing applications and Web services for the flexibility they offer

in locating, invoking solutions over the Internet and integrating them directly into

applications. All these technologies favour diffusion of models as they become easier to

implement and publish. They use a familiar and universal interface the web and strengthen it

with a highly flexible back-end arsenal.

The apparent complexity and formalism defining some of these technologies like data binding

or web services risks to discourage marketing scientists. What they seem to ignore is that

these “complexities” can be encapsulated using available wizards through which their

applications can flexibly link to data in the case of data binding or leverage the possibilities

for their models to integrate, embed or be embedded over the Internet in the case of web

services.

All technologies that have been described here have also been implemented on our generic

marketing model and can be visited on-line.

References
(2 0 0 4) . “ S p r i n t I P M O N D M S - A p p l i c a t i o n B r e a k d o w n . ”

http://ipmon.sprintlabs.com/packstat/ viewresult.php?0:appsbreakdown:sj-20.0-040206.

Alter, S.L. (1980) Decision Support Systems: Current Practice and Continuing Challenge,
Addison-Wesley, Reading, MA.

Berners-Lee, T., R. Cailliau, N. Pellow, and A. Secret (1993), "The World-Wide Web
I n i t i a t i v e , " i n Proceedings 1993 International Networking Conference,
http://info.isoc.org/ftp/ isoc/inet/inet93/papers/DBC.Berners-Lee

Bertoa, M.F., Troya, J.M. & Vallecillo, A. (2006), Measuring the usability of software
components, Journal of Systems and Software, 79, 3, 427–439.

Booch G. (1999) Object-oriented Analysis and Design with Applications (2nd edition).

Reading, MA, Addison-Wesley

Britton, C. & Bye, P. (2004), IT Architectures and Middleware, second ed., Addison-Wesley,

Boston.

Bultez, Alain, (1996), Mode de diagnostics de marchés concurrentiels. Recherche et
Applications en Marketing, 11, 4, 3-34.

Bultez, Alain, (1997), Econométrie de la compétitivité: modèles et contre-exemples.
Recherche et Applications en Marketing, 12, 1, 21-44.

23

Byrne, J., Heavey, C. & Byrne, P.J. (2010), A review of Web-based simulation and supporting
tools Simulation Modelling Practice and Theory, 18, 253–276

Calciu M. et Popa I. (2010) "A document based marketing decision support and simulation
framework. Application to a customer attraction/retention model.", 9-th, International
Conference Marketing Trends, Venice, January 21-23

Calciu M. et Vermeersch G. (2003) "Optimal continuous location in the geographic and
perceptual space using attractiveness and market share", INFORMS Annual Meeting
(Spatial Marketing Session), Atlanta, October 19-22

Calciu M., Benavent C. (1995) " Système d`estimation des taux de réponse à des opérations
promotionnelles avec apprentissage catégoriel et longitudinal ", Journées de recherche de
l`IAE de Lille, September 27-28

Claffy K, Miller G (1998). “The Nature of the Beast: Recent Traffic Measurements from an
Internet Backbone.” In “INET ’98,” Internet Society.

Colombo, Richard A., and Donald G. Morrison, (1989) A Brand Switching Model with
implications for Marketing Strategies. Marketing Science, 8,1, 89-100.

Eliasberg, Jehoshua and Garry L. Lilien, Eds. (1993) Handbook in Operational Research and
Management Science, Vol.5: Marketing, Elsevier Science Publishers B.V, Amsterdam:
North Holland.

Eom S.B. (1995) Decision support systems research: reference disciplines and a cumulative
tradition. Omega Int. J. Management Sci., 23, 511-523.

Eom S.B. (1998) The Intellectual Development and Structure of Decision Support Systems
1991-1995). Omega Int. J. Management Sci., 26, 639-657.

Festervand T.A & Harmon S.K (2001) Do marketing students need to speak XML? Journal of
Database Marketing, 9,1,16-23

Geoffrion AM, (1987) An introduction to structured modeling. Management Science, 33, 5,
p.547-589.

Hogue J.T adn Greco A.J. (1990) Developing Marketing Decision Support Systems
Development for Services Companies. Journal of Services Marketing, 4,1, 21-30.

Huh, Soon-Young (1993) Modelbase Construction with Object Oriented Constructs. Decision
Sciences, 24, 2, p.409-434.

Kachru, S. & Gehringer, E.F. (2004), A comparison of J2EE and .NET as platforms for
teaching web services, in: 34th ASEE/IEEE Frontiers in Education Conference (FIE),
Savannah, GA, USA, 2004, pp. 12–17.

Kazi I.H, David P Jose, Badis Ben-Hamida, Christian J Hescott et al. (2000), JaViz: A
client/server Java profiling tool, IBM Systems Journal, 39,1, 96-117

24

Kernigan B.W and Richie D.M. (1978) The C Programming Language, Prentice-Hall:
Englewood Cliffs, NJ.

Kotler, Ph. (1966), A Design for the Firm’s Marketing Nerve Center. Business Horizons, 9, 3,
63–74

Kuehn, A.A. (1961) A Model for Budgeting Advertising. Mathematical Models and Methods
in Marketing, Bass Franck et al. Homewood (eds.), I11, Richard D. Irwin, 315-348.

Lang D.T. (2001) Embedding S in Other Languages and Environments, Proceedings of the
2nd International Workshop on Distributed Statistical Computing, March 15-17, Vienna,
Austria

Lang D.T. (2007) R as a Web Client – the RCurl package, Journal of Statistical Software,
http://www.jstatsoft.org

Leeflang P.S.H & Wittink D.R. (2000) Building models for marketing decisions: past, present
and future. Intern. J. of Research in Marketing, 17, 105-126.

Lilien. G.L. (1987) Analyse des Décisions Marketing avec LOTUS 1-2-3 (P.Y.Desmet Trans.),
Paris: Economica. (Original work published 1986)

Lilien G.L & Rangaswamy A. (2000) Modeled to bits: Decision models for the digital,
networked economy, Intern. J. of Research in Marketing, 17, 227–235

Little, John D.C. (1970), Model and Managers: The Concept of a Decision Calculus.
Management Science, Vol. 16, No. 8 (April), 467-485

Little, John D.C. (1979), Decision Support Systems for Marketing Managers. Journal of
Marketing, Vol. 43, no. 3 (Summer), 9-27.

Meyer-Waarden L. and Benavent C. (2001) Loyalty Programmes: Strategies and Practice.
FEDMA Research Day, Madrid, september 14

Power,D.J., (2000), Decision Support Systems Hyperbook, http:// dssresources.com/dssbook/
(Fall).

Power,D.J. (2002), Decision Support Systems: Concepts and Resources for Managers,
Greenwood/Quorum Books, West- port, CT, 2002.

Power, D.J. (2004), Specifying an expanded framework for classify- ing and describing
decision support systems, Communica tions of the Association for Information Systems, 13
(13) ,158 – 166

Power,D.J., Sharda, R. (2007), Model-driven decision support systems: Concepts and research
directions, Decision Support Systems, 43, 1044–1061 .

Rumbaugh, J., Blaha, M., Premerlain, W., E.F., Lorenzo W. (1994), Object-oriented modeling

and design, Prentice-Hall, Engle- wood Cliffs, N.J.

25

Temple Lang, D. (2001) Embedding S in Other Languages and Environments, Proceedings of
the 2nd International Workshop on Distributed Statistical Computing, March 15-17,
Vienna, Austria.

Sharda, R., Barr, S., McDonnell, J. (1988), Decision support systems effectiveness: a review
and an empirical test, Management Science, 34,2,139 – 159.

Syzyperski, C. (2003), Component technology: what, where, and how? in: Proceedings of the
25th International Conference on Software Engineering, IEEE Computer Society, Portland,
Oregan, 2003, 684–693.

Sprague, R.H.,Jr., (1980), A framework for the development of decision support systems,
Management Information Systems Quarterly, 4, 4,1 – 26.

Sprague, R. and E. Carlson (1982) Building effective decision support systems. Prentice-Hall,
Englewood Cliffs, NJ.

Wierenga, B., van Bruggen, G.H., 1997. The integration of marketing problem solving modes
and marketing management support systems. Journal of Marketing 61, 21–37, July.

26

