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Abstract 
The new era in information systems (IS) brought over bythe Big Data(BD) phenomenon, comes 
with important challenges for society and enterprises. Decision Support Systems (DSS), in this new 
context, should help managementto develop agility in reaction to the data tzunami inputs they are 
facing on a daily basis. DSS for Big Data are best implemented in the cloud in a servitized way. In 
Marketing who is at the forefront of Big Data generation and use, DSS need to follow this trend in 
order to cope with Big DataVolume, Velocity and Variety (3V). 
We introduce an evolutionary view for DSS and specifically for MDSS in order to explain the shift 
from toolbox-centered DSS to service-centered DSS in the cloud. We then decline the several 
Service Oriented Approaches that have dominated service-centered DSS in order to distinguish 
SOMDSS in the Cloud as the strongly preferred pattern for dealing with Big Data. We finally insist 
on some new competences marketing scientist need to acquire in order to deal with Big Data 
computing in the Cloud. 

Introduction 
Two decades after the first commercial digital computers appeared (in 1954), Decision Support 
Systems were introducedas a new form of information systems that use models in order to assist 
managers’ decisions. With the advent of microcomputers, they became an area of research of its 
own in the middle of the 1970s and developed further during the 1980s. In 1966, Kotler introduced 
the concept of a ‘‘MarketingNerveCentre’’, providing marketing managers with ‘‘computer 
programs which will enhance their power to make decisions.’’ (Wierenga & al., 2008, p. 561). The 
concept and framework of a marketing decision support systems (MDSS) has been introduced by 
Little (1979) and is based on the so called DDM (Dialogue, Data, Model) paradigm of Sprague and 
Carlson (1982) that formed the dominant architecture for DSS from the sixties throughout the 
eighties (Eom, 1995). The same author defined MDSS as a ‘‘coordinated collection of data, systems, 
tools and techniques with supporting software and hardware by which an organization gathers and 
interprets relevant information from business and environment and turns it into an environment for 
marketing action’’ (Little, 1979, p. 11). This definition exhibits premonition as to the scalability of 
the evoked components and remains suitableto SOMDSS for Big Data in the cloud as will be shown 
in this paper.  
According to Sol & al. (1987) the definition and scope of DSS has been migrating over the years: in 
the 1970s DSS was described as "a computer-based system to aid decision making"; in the late 
1970s the DSS movement started focusing on "interactive computer-based systems which help 
decision-makers utilize data bases and models to solve ill-structured problems"; in the 1980s DSS 
should provide systems "using suitable and available technology to improve effectiveness of 
managerial and professional activities", and towards the end of 1980s DSS faced a new challenge 



towards the design of intelligent workstations. So the definition evolved from the single user and 
model-oriented DSS to group decision support systems (GDSS) and organizational decision support 
systems (ODSS). Wierenga & Van Bruggen (1997) used the term ‘‘marketing management support 
systems’’ for systems additionally supporting marketing decision-making in weakly-structured areas 
that are primarily qualitative, and knowledge-driven.  
Wether at single user, group or enterprise level, servitizing DSS has become progressively attractive 
due to network advances. 
Spohrer & al. (2007) defines a service as the application of competence and knowledge to create 
value between providers and receivers. Service systems include all human made systems that enable 
and/or grant diverse entities access to resources and capabilities such as transportation, water, food, 
energy, communications, buildings, retail, finance, health, education and governance (Spohrer & 
Demirkan, 2011). By analogy information systems can be seen as service systems as they support 
people in intentions and purposeful actions (Checkland & Howell, 2005). DSS who support 
purposeful actions are therefor also types of information systems and service systems (Demirkan 
&Dursun, 2013). 
We introduce an evolutionary view for DSS and specifically for MDSS in order to explain the shift 
from toolbox-centered DSS to service-centered DSS in the cloud. We then decline the several 
Service Oriented Approaches that have dominated service-centered DSS in order to distinguish 
SOMDSS in the Cloud as the strongly preferred pattern for dealing with Big Data. We finally insist 
on some new competences marketing scientist need to acquire to deal with BD computing in the 
Cloud. 

MDSS as Web Services 
The trend in DSS is moving from toolbox-centered architectures towards service-centered 
architectures. In toolbox-centered architectures, application and data are situated on the user’s 
computer or local area network. In service-centered architectures, the tools and data are situated on 
remote computers, typically accessed through Internet connections. 
An important difference in a web based MDSS is that its components: the model, the data, statistics 
and optimization are no longer necessarily located on the manager's desktop computer but can be 
accessed in a secure way from anywhere in the “universe”. Some additional differences between 
toolbox-centered and service-centered GMDSS are enumerated in table 1. 

Table 1- Some differences between toolbox-centered and service-centered MDSS 
 toolbox-centered (local) service-centered (web-based) 

Components 
power/location/integration 

limited/concentrated/ integrated complete/distributed/loosely integrated 

Data access control not available available 

Decision Support API non-standard, proprietary web application standards 

Maintenance& upgrading optional, user concerned automatic, user not concerned  

Software ecosystem resources limited unlimited 
 
Toolbox systems use to integrate limited database management and computation facilities in a 
standalone piece of software while in service-centered ones the main DSS (Decision Support 
System) components are distributed, loosely integrated and complete. The latter can provide data 
access control, meaning that «data themselves may not be freely distributable, but certain derived 
products (such as visualizations or generalizations) may be» (Bivand & al, 2008, p.6). 
Building model based decision support to solve a particular managerial problem must often rely on 
proprietary, non-standard Decision support API-s provided by toolbox-centered software while the 
service-centered approach can exclusively rely on open web-application standards. 
Maintenance and upgrading of software and data in service-centered solutions is done by the 
provider and end users don't have to bother about such matters. For an example of a web service for 
Geo-Marketing decisions support see Calciu(2012) and Calciu & Willart (2012). 



With web services the DSS software ecosystem1 becomes virtually unlimited. The software 
ecosystem metaphor is suitable for open computer systems like Linux/Unix or Big Data calculations 
and management environments like Apache Hadoop. It also can apply to specialized software 
systems as the continuously evolving statistical system R (R Development Core Team, 2011) .  
Service-centered approaches, unlike toolbox-centered ones, have unlimited access to such software 
ecosystem resources and can exploit their continuously improved facilities. 
Embedding models as web services: Lilien and Rangaswamy (2000, 2008) distinguish marketing 
modeling applications as to their degree of visibility and integration. According to this classification, 
models can be visible or embedded and standalone or integrated. To the original two criteria degree 
of integration and degree of visibility we add the client-server dimension. We distinguish between 
local, remote and hybrid MDSS (Calciu, 2013). When both the visual (interactive) logic and the 
model logic are concentrated on the client computer the application is “local”. When both are on the 
server it is “remote” and when the visual logic is on the client and the model logic is totally or 
partly on the server it is “hybrid”.  
Probably one of the nicest ideas for freely publishing, finding and flexibly embedding models over 
the Internet is the web services technology.  
Web services deal with embedded models, be they standalone or integrated pieces of software. 
Embedded distributed applications can be accessed over the network at a lower level through RPC 
(Remote Procedure Calls) and at a higher level as Web services. The latter provide envelopes that 
make such applications “universally” discoverable, able to communicate and interact with over the 
network.  

Building SOMDSS as Web services 
Web services (WS) are self-contained, self-describing, modularapplications that can be published, 
located, and invoked across the Web (Calciu, 2013). They can easily integrate with other services, 
from the same or different companies, to create a complete business process. This interoperability 
allows to dynamically publish, discover and bind a range of Web services through the Internet.  
The following standards play key roles in Web services: Universal Description, Discovery and 
Integration (UDDI), Web Services Description Language (WSDL), Web Services Inspection 
Language (WSIL), Simple Object Access Protocol (SOAP). They constitute together with some 
additional technologies such as WS-Addressing, WS-ReliableMessaging, WS- Security the “Big” 
Web services technology stack (Pautasso & al., 2008, Richardson & Ruby, 2007) that defines the 
WS-* standard. 
This WS-* standard came under criticism as to its presumed complexity. The alternative REST 
(REpresentational State Transfer) solution takes its inspiration from the web itself and shows that 
the same principles that have made the success of the World Wide Web can be used to solve 
enterprise application integration problems and to simplify service-oriented architectures. MDSS 
are aimed to integrate as enterprise applications and can therefore benefit form such technological 
trends (Calciu & al., 2013). 
REST is a style of software architecture for distributed systems such as the World Wide Web. The 
WWW itself is probably the largest implementation of REST principles. REST was introduced and 
defined in his doctoral thesis by Roy Fielding (2000), one of the principal authors of the Hypertext 
Transfer Protocol (HTTP) specification (Fielding & Tailor, 2002). A service is considered “RESTful” 
if conforming to REST principles (Calciu & Micheaux, 2014). RESTful Web services are gaining 
increased attention because of their publishing and consumption simplicity (Vinowski, 2002). 
These web service standards and approaches, and particularly REST are used in service-oriented 
(SO) solutions for the cloud that are preferred in Big Data calculations. Any marketing decision 
support model, can be easily embedded as such a web service. 
Probably the quickest and most efficient way to bring applied statistics and in particular marketing 
models to the market is OpenCPU (see http://opencpu.org). OpenCPU provides a mature and robust 
                                                
1 “a collection of software systems, which are developed and co-evolve in the same environment” (Lungu, 2009) 



system for hosting R based services. It exposes a simple HTTP API for calling R functions, scripts 
and managing data that in many aspects satisfies REST principles. 
For marketing scientist and data scientists, who have massively adopted R as their statistical system, 
it is rather easy to discover and execute statistical functions, using familiar http addresses (url-s). To 
discover for example the function “rnorm” that generates normal random values it is enough to 
connect to the address http://marketing.iae.univ-lille1.fr/ocpu/library/stats/R/rnorm on the authors’s 
openCPU service, by using a webclient be it a browser or a command-line program like “curl”. The 
discovery mechanism, that is so important in defining web services, can be used progressively. It 
exposes the HTTP method GET. By first doing http://host/ocpu/library/ the service returns all 
available R packages on that server. Then intuitively asking for all functions available in the “stats” 
package by doing http://host/ocpu/library/stats/R/ one receives a long list containing also rnorm. 
Again by intuitively adding to the uri path ./rnorm one gets the arguments expected by the function. 
To execute the function with the chosen argument values a HTTP method POST will be used either 
from a HTML form on a web page or from command-line doing curl http://host/ocpu/library/stats 
/R/rnorm/print -d "n = 10&mean = 10". The latter will print the expected results, that is 10 normally 
distributed values around the mean 10.  
Implementing a RESTfull SOMDSS: Using the same RESTfull approach we have implemented 
several SOMDSS for predicting customers’ dynamic purchase behavior from their Recency and 
Frequency represented by “buy till you die” stochastic processes (Fader & al., 2005; Batislam & al., 
2007). After having implemented and “packaged” in R most of the mentioned models, we have also 
developed, so called “adhoc” packages based upon the first. 
Someone, who wants to see how the probability of being active varies for customers defined by 
their purchase Recency and Frequency, can use the same intuitive approach as before. By doing 
http://host/ocpu/library in order to find in the long list of R packages the ones beginning with the 
name “adhoc” he would discover the package called “adhocpactive”. Then by adding to the uri 
path ./adhocpactive/R he would discover that there is a function called “plotSimPactive” and, by 
adding it to the path, he would see its expected arguments. Even more by changing the path 
to ../man/plotSimPactive/ he would get access to the help document for that function. The latter is in 
text format by default. Other formats can be obtained when adding ./pdf or ./html to the path. 
After this process of RESTful service discovery the function can be executed with a HTTP POST: 
curl http://host/ocpu/library/adhocpactive/R/plotSimPactive/png -d 'modelname = 
"BGNBD"&per = 100&n = 6' --output plotSimPactive.png 
The resulting graph will show the predicted probability of being active for 6 randomly extracted 
customers from the “cdnow” database (see. Fader & al., 2005) with their given initial Recency and 
Frequency using the parameters of the already calibrated “BGNBD” model. Their future purchase 
behavior (buy or not) is simulated for the indicated 100 days period. Adding a simple web interface 
to this R package turns the models visible and makes the SOMDSS interactive and userfriendly, as 
can be seen at http://marketing.iae.univ-lille1.fr/ocpu/library/adhocpactive/www/. 

Figure 1- Probability of being active for six customers during hundred days 

 



The day a customer buys, his probability of being active jumps to attain a peak and eventually 
slowly falls thereafter during the consecutive days without purchase with an acceleration that 
depends on the customer’s initial Recency and Frequency. The simulated behaviorrespects each 
customer’s Frequency. For example in Figure 1 two customers with very frequent purchase and 
none or very short inter-purchase periods maintain a very high probability of being active while for 
the others this probability visibly declines during inter-purchase periods that correspond to known 
customer frequency. For more details concerning Restfull SOMDSS one could refer to Calciu & al. 
(2012). 

Cloud services and Big Data 
Big Data come with additional difficulties for academic model based MDSS providers. Volume, 
Variety and Velocity that characterize such data need huge resources in order to provide solutions 
for agile managerial response. While offering classical MDSS as web services is possible using 
resources that normal individual researchers own or control, Big Data need huge computers or 
clusters of computers that normally are owned and controlled by entities or institutions like 
universities, big companies or cloud solutions providers, that can afford them. Such computing 
resources can flexibly be shared using cloud technology. 

Figure 2- Cloud computing 

 

The American National Institute of Standards and Technology (NIST) defines cloud computing “as 
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, storage, applications, and services) that 
can be rapidly provisioned and released with minimal management effort or service provider 
interaction. Cloudsare composed of three service models: Software as a Service (SaaS), Platform as 
a Service (PaaS) and Infrastructure as a Service (IaaS), and they have four deployment models: 
Public, Private, Hybrid, Community. 
The main enabling technology for cloud computing is virtualization. Virtualization software 
separates a physical computing device (bare metal environment) into one or more "virtual" devices, 
each of which can be easily used and managed to perform computing tasks. With operating system 
level virtualization essentially creating a scalable system of multiple independent computing 
devices, idle computing resources can be allocated and used more efficiently. Virtualization 
provides the agility required to speed up IT operations, and reduces cost by increasing infrastructure 
utilization. While SaaS tends towards autonomic computing the other two service models need 
some user intervention. Autonomic computing automates the process through which the user can 
provision resources on-demand. By minimizing user involvement, automation speeds up the process, 
reduces labor costs and reduces the possibility of human errors. (Hamdaqua & Tahvildari, 2012). 
The difference in term of hardware and software elements that can and need to be managed on a 
cluster between the on premisses “bare metal” computers and the three cloud service models may 
be seen in Table 2. 
 



Table 2Differences between the service models in the Cloud and on premisses 
 On premises In the Cloud 

You manage ? Bare metal IaaS PaaS SaaS 

Applications y y y n 

Runtime2 y y y n 

Middleware3 y y n n 

OS y y n n 

Virtualization y n n n 

Servers y n n n 

Storage y n n n 

Networking y n n n 
Adapted from Watts (2017) 

In the cloud everything is a service be it software applications, platforms or infrastructure (see 
figure 2). But cloud services are more complex than web services. They include both the ability to 
run a service and concepts of scalability, eventual multi-tenancy4or even a business component 
(billing, etc.). A Web Service is just a technological mechanism to implement a software capability. 
A service may be exposed as a web service, but just being a web service does not make something 
an example of Cloud Service. 
Cloud computing finding its root in Services Oriented Architecture (SOA)all cloud services use web 
services of any category SOAP, JSON or REST. 

Building Big Data MDSS in the Cloud 
Building MDSS for Big Data comes with additional complexity.Besides complexities coming from 
the variety of data andthe velocity expected, Big Data volume imposes splitting data and 
calculations among several computers (nodes)that are organized in clusters and preferably managed 
behind clouds as virtual machines or, more recently, containers.Most mathematical calculations can 
be adapted for BigDatausing MapReduce, a programming model and an associated implementation 
that has “democratized” processing big data with a parallel, distributed algorithm on a cluster. The 
approach hides the complexities of massively parallel distributed computing, letting the marketing 
or data scientist concentrate on two procedures: the map method which associates keys and values 
to datasets forfurther filtering and sorting and the reduce method that performs summary operations 
based upon the previously associated keys. It is inspired from the map and reduce higher order 
functions commonly used in functional programming. Introduced as a proprietary Google 
technology in 2004, it became generic and its most popular implementation is Apache Hadoop.  
MapReduce and its improvements like Apache Spark use Share-Nothing as the strongly preferred 
distributed-computing pattern in a clusterof commodity computers. At this stage of technology the 
alternative classical Share-Everything pattern is not a choice because network latency and 
congestion are the bottleneck relative to main memory and local storage. The key contributions of 

                                                
2 Runtime is the period of time when a program is running. It begins when a program is opened (or executed) and 

ends with the program is quit or closed. When a program is in the runtime phase, the application is loaded into 
RAM. This includes the executable file and any libraries, frameworks, or other files referenced by the program. 
When the program is quit, the runtime period ends and the memory used by the program is made available for use 
by other programs. Programmers sometimes distinguish between what gets embedded in a program when it is 
compiled (compile time) and what gets embedded or used at runtime (or load time) like shared libraries like dlls.  

3 Middleware is computer software that provides services to software applications beyond those available from the 
operating system. In distributed applications this role can be played by web servers, application servers or other 
tools that support application delivery. 

4 software architecture in which a single instance of software runs on a server and serves multiple tenants. A tenant is 
a group of users who share a common access with specific privileges to the software instance.  



MapReduce implementations are the scalability and fault tolerance achieved by optimizing the 
execution engine. 
Hadoop as a federating MapReduce framework has become an ecosystem formed by numerous 
Apache Software Foundation projects that make up the services required by an enterprise to deal 
with Big Data in an agile way. For example Hortonworks, a major data analytics vendor, groups 
these open-source components into a Data Platform with 23 components5 associated to five pillars: 
Data Management (2), Data Acces (13), Data Governance & Integration (3), Security (2), 
Operations (3). A model based MDSS will probably not use all the components mentioned above 
but for the computational aspects several of these Hadoop ecosystem components need to be 
installed on all Virtual Machines of a cluster and orchestrated. 

Orchestrating6 the MDSS infrastructure and ecosystem 
Our MDSS computing power component is hosted on the authors’ University cloud7 that uses 
OpenStack, a free and open-source software platform for cloud computing, mostly deployed as an 
infrastructure-as-a-service (IaaS). Paradoxically public cloud platforms are dominated by private 
solutions like Amazon AWS, Google Cloud Platform, IBM Cloud or Microsoft Azure. Open-source 
platforms seem to loose ground in this field. On the other hand private cloud solutions for 
enterprises, or universities that don’t outsource their computer centers are better served by open-
source platforms like OpenStack. 
Configuring8 the local (client) computer to use the remote cloud: Although OpenStack has a quite 
powerful web-interface (called Horizon) which allows to launch virtual computer instances of 
various linux system versions and flavors9 from available virtual machine images10 these images 
usually don't have big data calculation software installed. Therefore the main command-line 
OpenStack clients need to be installed (keystone, nova, glance, cinder, neutron) in order to automate 
install operations by preparing shell commands that will be executed on the remote computer 
instances. First it is necessary to generate the ssh key11 on the local computer and register it with the 
cloud12 in order to be able to remotely access the cloud administration server. A configuration file to 
create the client environment consisting of username and password (also tenant name and the 
server's authentication url) allows the marketing scientist to remotely-control the Big Data MDSS 
infrastructure using OpenStack client command-line and shell commands. After all SSH13 that 
allows to execute command-line “shell” on remote computers is the most common orchestration 
tool of all and preexisted all the others.  

                                                
5 Apache Hadoop YARN, HDFS, Apache Hive , Apache Pig, MapReduce, Apache Spark, Apache Storm, Apache 

Hbase, Apache Tez, Apache Kafka, Apache Hcatalog, Apache Slider, Apache Solr, Apache Mahout, Apache 
Accumulo, Workflow Management, Apache Flume, Apache Sqoop, Apache Knox, Apache Ranger, Apache Ambari, 
Apache Oozie, Apache ZooKeeper 

6 Orchestration means arranging or coordinating multiple systems. It is also means running the same tasks on several 
computers at once, but not necessarily all of them. 

7 The cloud consists of 336 cores, 2.1 To RAM and 215 To de storage and a total power of de 6,5 Tflops  
8 Configuration normally takes “facts” to make true about a server. For example insure that a configuration file 

contains a given instruction or verify that configuration files needed for an application are present. Configuration is 
part of provisioning. Provisioning often implies it’s the first time you do it. Configuration management usually 
happens repeatedly. 

9 flavors define the compute, memory, and storage capacity ofcomputing instances. A flavor is an available hardware 
configuration for a server. It defines the size of a virtual server that can be launched. 

10 A virtual machine image is a single file which contains a virtual disk that has a bootable operating system installed 
on it 

11 ssh-keygen -t rsa -f ${HOME}/.ssh/cloud-hpc-lille  
12 nova keypair-add --pub-key=${HOME}/.ssh/cloud-hpc-lille.pub mcmac2key 
13 SSH or Secure Shell is a cryptographic network protocol that gives users a secure way to access a computer over an 

unsecured network. It is mainly used for remote command execution, but any network service can be secured with 
SSH.  



Provisioning14 the remote scalable MDSS infrastructure: Controlling the MDSS infrastructure 
means launching virtual computer instances by choosing the operating system among several linux 
distribution images (in our case Ubuntu 14.04.2 - 64 bit) and a given flavor (in our case 8-CPU-
12GB-RAM) as well as the network on which these virtual computers will form a cluster.  
This can be done interactively by using command-line or a shell program as in Listing 2 (see 
Appendix) or pragmatically using an orchestration and/or provisioning tool like Ansible. The latter 
is considered one the most prominent tools applying infrastructure as code principles. Infrastructure 
as code (IaC) is the process of managing and provisioning computer data centers through machine-
readable definition files, rather than physical hardware configuration or interactive configuration 
tools (Wittig & Wittig, 2016). 
The launched instances can then be interactively or programmatically observed, stopped, started or 
even deleted. The size of the cluster can be adapted within the limits of the quota previously 
attributed by the cloud administrator15.  
Another aspect of Infrastructure as a Service (IaaS) is controlling network infrastructure by 
associating public IP addresses to some computers in the clusters and ensuring their firewall 
protection through association to security groups. Public IP addresses allow among others 
connecting to and controlling the instances and viewing on the web browser the calculation stages 
of the Big Data cluster engines that will be installed on each computer. For the Big Data 
calculations engine (here Apache-Spark) one computer instance will be given the role of a master 
and the others the role of workers (slaves).  
Finally in order to allow all computer instances to interact during calculations, as if they were one 
computer, the computation engine user (here hadoop) on each machine needs password-less ssh 
network access to all cluster members. This is done by generating a public and private key for the 
computing engine user and distributing it together with the ssh configuration files to all cluster 
members. 
Deploying16 the computational ecosystem components: In order to deploy several of the Hadoop 
ecosystem components on all Virtual Machines we used Ansible for orchestration purposes. We 
adapted a solution suggested by Borisenko & al. (2016)17 that uses Ansible playbooks in a loosely 
coupled way in order to be able to choose among any Apache Spark and Apache Hadoop versions 
and provide an ability to add any additional components of the Hadoop ecosystem. A reason for this 
is that Apache Spark, which is todays most powerful Big Data computing engine, is under heavy 
development and versions change more frequently than OpenStack releases. 

MDSS in Containers 
Containers, a new trend in virtualization, may substantially reduce the MDSS orchestration burden. 
Containerization has gained ground as an alternative to virtualization. In fact containerization can 
be seen as a special kind of virtualization that occurs at operating system level while in Virtual 
Machines it occurs at hardware-level.Historically, in Unix systems, the first containers just provided 
isolation of the root file system (via chroot). Later FreeBSD jails extended this to additional 
namespaces such as process identifiers. A modern container is more than just an isolation 
mechanism: it also includes an image that contains the files of the application that runs inside the 
container (Burns & al., 2016). While much more lightweight than Virtual Machines (VMs), 
containers provide resource-management tools that make running applications efficient. They also 

                                                
14 Provisioning for operations professionals refers to getting computers or virtual hosts to use and installing needed 

libraries or services on them.  
15 Our quota consisted of 8 instances with 8 cores each (meaning a total of 64 cores),12 Gb RAM (meaning 96Gb for 

the cluster) and 25 Gb disk storage (meaning potentially 200 Gb for the HDFS file system). 
16 Deployment is the process of getting an application and its dependencies installed on a computer. For developers it 

may also mean the process of preparing the server, perhaps by installing libraries or daemons while operations 
professionals , would use the word “provisioning” for that. 

17 https://github.com/ispras/spark-openstack 



provide robust kernel-level resource isolation to prevent the processes from interfering with one 
another. 
Docker is a tool that can package an application and its dependencies in a virtual container that can 
run on almost any server, out of the box, without installing any software. The resulting flexibility 
and portability allowing running applications everywhere will be illustrated here with the building 
and packaging of the RESTfull SOMDSS mentioned above.  
Container based DevOps18 to implement MDSS using OpenCPU: Because OpenCPU is completely 
open source, SOMDSS can be built and shipped on DockerHub, a cloud-based registry service 
which allows to ship Docker images in a public repository. 
Downloading the combined opencpu/rstudio image and creating (running) a container giving the 
full flexibility of a Linux box, without the need to install anything on the host system (in our case a 
OS-X on a MacBooPro machine) is done with: 
docker run -t -p 8004:8004 opencpu/rstudio 
After this http://localhost:8004/ocpu/ and http://localhost:8004/rstudio/can be accessed with a 
browser or command-line web client. Logging in via rstudio with user: opencpu (passwd: opencpu) 
allows to build or install packages and their web-ready versions called apps. Following the 
classification of Lilien & Rangaswamy (2000, 2008), while R packages support embedded models, 
apps, that are specific to OpenCPU are R packages coming with a full fledged web interface, make 
the models visible. 
Withdocker execone connects to a root shell of the minimal system running in the container. This 
gives full control allowing to install additional software in the server, customize the web server, 
modify R options, optimize performance by preloading data or packages.  

Minimizing MDSS orchestration with Containers 
As we could see containers can substantially reduce the MDSS building, deployment and 
orchestration burden on one machine. But what about MDSS for Big Data that need to do their 
calculations on several machines. Kubernetes is an open source container-centric management 
environment developed at Google, that facilitates both declarative configuration and automation. It 
orchestrates computing, networking, and storage infrastructure on behalf of user workloads. This 
provides much of the simplicity of Platform as a Service (PaaS) with the flexibility of Infrastructure 
as a Service (IaaS), and enables portability across infrastructure providers. Itfavors development of 
DSS that run in a cluster by making it easy to deploy and manage complex distributed systems, 
while still benefiting from the improved utilization that containers enable. In this approach 
containers can be grouped in so called pods that can play an equivalent role as Virtual Machines in a 
cluster. 
As Kubernetes requires users to supply images that can be deployed into containers within pods, 
Apache Spark ships with a bin/docker-image-tool.sh script that can be used to build and publish the 
Docker images to a repository as can be seen in listing 1. 

Listing 1  
./bin/docker-image-tool.sh -m -t spark-docker build 
./bin/docker-image-tool.sh -r <repo> -t spark-docker push 
 
Spark creates a Spark driver running within a Kubernetes pod. The driver creates executors which 
are also running within Kubernetes pods and connects to them, and executes application code. 

                                                
18 DevOps is a software development methodology that combines software development (Dev) with information 

technology operations (Ops).  



Figure 3– Apache Spark on Kubernetes 

 

Source: https://kubernetes.io/blog/2018/03/apache-spark-23-with-native-kubernetes/ 

The listing that runs an example application on 3 executor instances as in figure 3 is given in 
Listing 3 in Appendix.  

Discussions and Conclusion 
Academic Marketing scientists develop decision support models or find new uses to existing 
models offering better managerial solutions to marketing problems. These solutions, in order to be 
used, need to be implemented as MDSS. We show that SOMDSS have become mainstream due to 
the diffusion of web services technologies and that their complexity increases with the advent of 
Big Data. In contrast with SOMDSS that don’t need more than one computer, Big Data SOMDSS 
come with additional orchestration, provisioning and deployment challenges. Both can be 
implemented in the cloud and both benefit from the facilities and simplifications brought over by 
containerization. We adopted a hands-on approach trying to offer demonstrative implementations of 
SOMDSS both on one computer and on a cluster of computers in the cloud. 
Although most of the orchestration, provisioning, deployment, configuration or even 
containerization challenges we have mentioned above might be transferred to intermediaries, being 
knowledgeable about them may significantly help bring academic marketing models to the market.  
If we take the stochastic models we have mentioned in the paper, the authors who have improved 
the now classical ParetoNBD model by introducing BGNBD, that allows much faster estimation, 
have also launched a series of extensions and improvements to these models. Then other authors 
joined in creating new models like MBGNBD (Batislam & al, 2007), or later Pareto/GGG (Platzer 
& Reutterer, 2016) etc. Then a small team around one of the authors of the BGNBD model has 
developed a R package called BTYD meaning “Buy Till You Die”, signifying the kind of purchase 
behavior that is represented by these models. In the summer 2014 they published it on the selective 
CRAN Repository containing thousands of very thoroughly tested R packages. At the end 2016 one 
of the authors of the Pareto/GGG published on the same repository the BTYDplus package that 
includes their models and the other significant models in this category, that were not included in the 
first package. In this way all those models came very close to market as embedded models. 
A next step would have been to build the container image of the two R packages and the OpenCPU 
hosting R services system, and publish it on DockerHub. Therefrom other people could download 
that image and run the container on their servers or in the cloud and offer this embedded collection 
of models as a RESTfull web service equivalent to a SOMDSS.  
Further research is needed to make the implementation of such models suitable for Big Data and 
adapt their calibration algorithms to MapReduce. 
There is already much evidence that a growing part of business application software spending is and 
will be on software-as-a-service, instead of as product licenses. Also for more and more companies, 
the pay-as-you-go service-oriented computing model like cloud computing, with having someone 



else worrying about maintaining the hardware and software are becoming very attractive (Marston, 
2011).  
For these reasons we think that marketing model builders and marketing scientists in general need 
to have a grasp of service oriented and cloud technologies as this is increasingly the way, and for 
Big Data it is probably the only way, their models and MDSS can be brought to the market.  
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Appendix 
Listing 2- Creating the cluster infrastructure with one master and seven workers on the cloud with OpenStack 
openstack server create --flavor $OS_FLAVOR --image $OS_IMAGE --nic 
netid=$ OS_NETID --key-name $OS_KEYNAME --user-data init-spark-master.sh 
sparkmaster # Create Spark master VM  
for i in {1..7}  
do 
openstack server create --flavor $OS_FLAVOR --image $OS_IMAGE --nic 
netid=$ OS_NETID --key-name $OS_KEYNAME --user-data init-spark-worker.sh 
sparkworker$ i # Create first Spark workers  
done  
 

Listing 3- Executing a Big Data calculation on a Kubernetes cluster with 3 executors 
spark-submit --master k8s://https://192.168.99.101:8443 \ 
--deploy-mode cluster \ 
--name spark-pi \ 
--class org.apache.spark.examples.SparkPi \ 
--conf spark.executor.instances=3 \ 
--conf spark.kubernetes.container.image=spark \ 
local:///opt/spark/examples/jars/spark-examples_2.11-2.3.0.jar 


